Analysing trajectories of a longitudinal exposure: A causal perspective on common methods in lifecourse research
Autoři:
Sarah C. Gadd aff001; Peter W. G. Tennant aff001; Alison J. Heppenstall aff001; Jan R. Boehnke aff005; Mark S. Gilthorpe aff001
Působiště autorů:
Leeds Institute of Data Analytics, University of Leeds, Leeds, England, United Kingdom
aff001; School of Geography, University of Leeds, Leeds, England, United Kingdom
aff002; School of Medicine, University of Leeds, Leeds, England, United Kingdom
aff003; The Alan Turing Institute, London, England, United Kingdom
aff004; School of Nursing and Health Sciences, University of Dundee, Dundee, Scotland, United Kingdom
aff005
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225217
Souhrn
Longitudinal data is commonly analysed to inform prevention policies for diseases that may develop throughout life. Commonly methods interpret the longitudinal data as a series of discrete measurements or as continuous patterns. Some of the latter methods condition on the outcome, aiming to capture ‘average’ patterns within outcome groups, while others capture individual-level pattern features before relating these to the outcome. Conditioning on the outcome may prevent meaningful interpretation. Repeated measurements of a longitudinal exposure (weight) and later outcome (glycated haemoglobin levels) were simulated to match three scenarios: one with no causal relationship between growth rate and glycated haemoglobin; two with a positive causal effect of growth rate on glycated haemoglobin. Two methods that condition on the outcome and one that did not were applied to the data in 1000 simulations. The interpretation of the two-step method matched the simulation in all causal scenarios, but that of the methods conditioning on the outcome did not. Methods that condition on the outcome do not accurately represent a causal relationship between a longitudinal pattern and outcome. Researchers considering longitudinal data should carefully determine if they wish to analyse longitudinal data as a series of discrete time points or by extracting pattern features.
Klíčová slova:
Birth weight – Covariance – Diabetes diagnosis and management – Directed acyclic graphs – Science policy – Simulation and modeling
Zdroje
1. World Health Organization. The case for investing in public health. 2015.
2. Littell Ramon C, Pendergast J, Natarajan R. Modelling covariance structure in the analysis of repeated measures data. Statistics in Medicine. 2000;19(13):1793–819. doi: 10.1002/1097-0258(20000715)19:13<1793::aid-sim482>3.0.co;2-q 10861779
3. Davidian M, Giltinan DM. Nonlinear models for repeated measurement data. London: Chapman & Hall; 1995.
4. Smith AD, Heron J, Mishra G, Gilthorpe MS, Ben-Shlomo Y, Tilling K. Model Selection of the Effect of Binary Exposures over the Life Course. Epidemiology (Cambridge, Mass). 2015;26(5):719–26. Epub 2015/07/15. doi: 10.1097/ede.0000000000000348 PubMed Central PMCID: PMC4521897. 26172863
5. Smith ADAC, Hardy R, Heron J, Joinson CJ, Lawlor DA, Macdonald-Wallis C, et al. A structured approach to hypotheses involving continuous exposures over the life course. International Journal of Epidemiology. 2016;45(4):1271–9. doi: 10.1093/ije/dyw164 27371628
6. Naimi AI, Cole SR, Kennedy EH. An introduction to g methods. International Journal of Epidemiology. 2017;46(2):756–62. doi: 10.1093/ije/dyw323 28039382
7. Glass TA, Goodman SN, Hernán MA, Samet JM. Causal inference in public health. Annual review of public health. 2013;34:61–75. Epub 2013/01/07. doi: 10.1146/annurev-publhealth-031811-124606 23297653.
8. Russo F. Public health policy, evidence, and causation: lessons from the studies on obesity. Medicine, Health Care and Philosophy. 2012;15(2):141–51. doi: 10.1007/s11019-011-9335-y 21655967
9. Barker DJP, Osmond C, Forsén TJ, Kajantie E, Eriksson JG. Trajectories of Growth among Children Who Have Coronary Events as Adults. New England Journal of Medicine. 2005;353(17):1802–9. doi: 10.1056/NEJMoa044160 16251536.
10. Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Statistics in Medicine. 2006;25(24):4279–92. doi: 10.1002/sim.2673 16947139
11. National Institute for Health and Care Excellence. Clinical Knowledge Summary: Diabetes—type 2 2016 [updated August 201704/06/2018]. Available from: https://cks.nice.org.uk/diabetes-type-2#!diagnosissub.
12. Tu Y-K, Tilling K, Sterne JAC, Gilthorpe MS. A critical evaluation of statistical approaches to examining the role of growth trajectories in the developmental origins of health and disease. International Journal of Epidemiology. 2013;42(5):1327–39. doi: 10.1093/ije/dyt157 24038715
13. Tu Y-K, Gilthorpe MS. Statistical thinking in epidemiology. London: Chapman & Hall/CRC; 2010.
14. Blozis SA, Cho YI. Coding and centering of time in latent curve models in the presence of interindividual time heterogeneity. Structural Equation Modeling-a Multidisciplinary Journal. 2008;15(3):413–33. doi: 10.1080/10705510802154299 WOS:000258773700003.
15. Mehta PD, West SG. Putting the individual back into individual growth curves. Psychological Methods. 2000;5(1):23–43. doi: 10.1037/1082-989x.5.1.23 10937321
16. Shrier I, Platt RW. Reducing bias through directed acyclic graphs. BMC Medical Research Methodology. 2008;8(1):70. doi: 10.1186/1471-2288-8-70 18973665
17. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–1372018.
18. Sayers A, Heron J, Smith A, Macdonald-Wallis C, Gilthorpe MS, Steele F, et al. Joint modelling compared with two stage methods for analysing longitudinal data and prospective outcomes: A simulation study of childhood growth and BP. Statistical methods in medical research. 2017;26(1):437–52. Epub 2014/09/13. doi: 10.1177/0962280214548822 25213115; PubMed Central PMCID: PMC5476230.
19. Ben-Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. International Journal of Epidemiology. 2002;31(2):285–93. doi: 10.1093/ije/31.2.285 11980781
20. Howe CJ, Cole SR, Lau B, Napravnik S, Eron JJ Jr. Selection Bias Due to Loss to Follow Up in Cohort Studies. Epidemiology. 2016;27(1):91–97. doi: 10.1097/EDE.0000000000000409 26484424
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy