In Vitro detection of Chronic Wasting Disease (CWD) prions in semen and reproductive tissues of white tailed deer bucks (Odocoileus virginianus)
Autoři:
Carlos Kramm aff001; Ruben Gomez-Gutierrez aff001; Claudio Soto aff001; Glenn Telling aff004; Tracy Nichols aff005; Rodrigo Morales aff001
Působiště autorů:
Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
aff001; Universidad de Los Andes, Facultad de Medicina, Las Condes, Santiago, Chile
aff002; Department of Cell Biology, University of Malaga, Malaga, Spain
aff003; Prion Research Center, Colorado State University, Fort Collins, CO, United States of America
aff004; Veterinary Services, APHIS, United States Department of Agriculture, Fort Collins, CO, United States of America
aff005; CIBQA, Universidad Bernardo OHiggins. Santiago, Chile
aff006
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226560
Souhrn
Chronic Wasting Disease (CWD) is a prion disease affecting several cervid species. Among them, white-tailed deer (WTD) are of relevance due to their value in farming and game hunting. The exact events involved in CWD transmission in captive and wild animals are still unclear. An unexplored mechanism of CWD spread involves transmissions through germplasm, such as semen. Surprisingly, the presence and load of CWD prions in semen and male sexual tissues from WTD has not been explored. Here, we described the detection of CWD prions in semen and sexual tissues of WTD bucks utilizing the Protein Misfolding Cyclic Amplification (PMCA) technology. Samples were obtained post-mortem from farmed pre-clinical, CWD positive WTD bucks possessing polymorphisms at position 96 of the PRNP gene. Our results show that overall CWD detection in these samples had a sensitivity of 59.3%, with a specificity of 97.2%. The data indicate that the presence of CWD prions in male sexual organs and fluids is prevalent in late stage, pre-clinical, CWD-infected WTD (80%-100% of the animals depending on the sample type analyzed). Our findings reveal the presence of CWD prions in semen and sexual tissues of prion infected WTD bucks. Future studies will be necessary to determine whether sexual contact and/or artificial inseminations are plausible means of CWD transmission in susceptible animal species.
Klíčová slova:
Animal prion diseases – Blood – Deer – Chronic wasting disease – Prions – Semen – Testes – Epididymis
Zdroje
1. Haley NJ, Hoover EA. Chronic wasting disease of cervids: current knowledge and future perspectives. Annu Rev Anim Biosci. 2015;3: 305–325. doi: 10.1146/annurev-animal-022114-111001 25387112
2. Sigurdson CJ, Aguzzi A. Chronic wasting disease. Biochim Biophys Acta. 2007;1772: 610–618. doi: 10.1016/j.bbadis.2006.10.010 17223321
3. Benestad SL, Mitchell G, Simmons M, Ytrehus B, Vikøren T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet Res. 2016;47: 88. doi: 10.1186/s13567-016-0375-4 27641251
4. Williams ES, Young S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J Wildl Dis. 1980;16: 89–98. doi: 10.7589/0090-3558-16.1.89 7373730
5. Sohn H-J, Kim J-H, Choi K-S, Nah J-J, Joo Y-S, Jean Y-H, et al. A case of chronic wasting disease in an elk imported to Korea from Canada. J Vet Med Sci. 2002;64: 855–858. doi: 10.1292/jvms.64.855 12399615
6. Kim T-Y, Shon H-J, Joo Y-S, Mun U-K, Kang K-S, Lee Y-S. Additional cases of Chronic Wasting Disease in imported deer in Korea. J Vet Med Sci. 2005;67: 753–759. doi: 10.1292/jvms.67.753 16141661
7. Zabel M, Ortega A. The Ecology of Prions. Microbiol Mol Biol Rev. 2017;81: e00001–17. doi: 10.1128/MMBR.00001-17 28566466
8. Saunders SE, Bartelt-Hunt SL, Bartz JC. Prions in the environment: occurrence, fate and mitigation. Prion. 2008;2: 162–169. doi: 10.4161/pri.2.4.7951 19242120
9. Mathiason CK, Powers JG, Dahmes SJ, Osborn DA, Miller KV, Warren RJ, et al. Infectious prions in the saliva and blood of deer with chronic wasting disease. Science (80-). 2006;314: 133–136. doi: 10.1126/science.1132661 17023660
10. Mathiason CK, Hays SA, Powers J, Hayes-Klug J, Langenberg J, Dahmes SJ, et al. Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure. PLoS One. 2009. doi: 10.1371/journal.pone.0005916 19529769
11. Plummer IH, Wright SD, Johnson CJ, Pedersen JA, Samuel MD. Temporal patterns of chronic wasting disease prion excretion in three cervid species. J Gen Virol. 2017;98: 1932–1942. doi: 10.1099/jgv.0.000845 28708047
12. Haley NJ, Seelig DM, Zabel MD, Telling GC, Hoover EA. Detection of CWD prions in urine and saliva of deer by transgenic mouse bioassay. PLoS One. 2009;4: e4848. doi: 10.1371/journal.pone.0004848 19293928
13. Tamgüney G, Miller MW, Wolfe LL, Sirochman TM, Glidden DV, Palmer C, et al. Asymptomatic deer excrete infectious prions in faeces. Nature. 2009;461: 529–532. doi: 10.1038/nature08289 19741608
14. Nichols TA, Fischer JW, Spraker TR, Kong Q, VerCauteren KC. CWD prions remain infectious after passage through the digestive system of coyotes (Canis latrans). Prion. 2015;9: 367–375. doi: 10.1080/19336896.2015.1086061 26636258
15. Fischer JW, Nichols TA, Phillips GE, VerCauteren KC. Procedures for identifying infectious prions after passage through the digestive system of an avian species. J Vis Exp. 2013; e50853. doi: 10.3791/50853 24300668
16. Nalls AV, McNulty E, Powers J, Seelig DM, Hoover C, Haley NJ, et al. Mother to offspring transmission of chronic wasting disease in reeves’ muntjac deer. PLoS One. 2013;8: e71844. doi: 10.1371/journal.pone.0071844 23977159
17. Kramm C, Pritzkow S, Lyon A, Nichols T, Morales R, Soto C. Detection of Prions in Blood of Cervids at the Asymptomatic Stage of Chronic Wasting Disease. Sci Rep. 2017. doi: 10.1038/s41598-017-17090-x 29222449
18. Browning SR, Mason GL, Seward T, Green M, Eliason GAJ, Mathiason C, et al. Transmission of prions from mule deer and elk with chronic wasting disease to transgenic mice expressing cervid PrP. J Virol. 2004;78: 13345–13350. doi: 10.1128/JVI.78.23.13345-13350.2004 15542685
19. Morales R, Duran-Aniotz C, Diaz-Espinoza R, Camacho MV, Soto C. Protein misfolding cyclic amplification of infectious prions. Nat Protoc. 2012;7: 1397–1409. doi: 10.1038/nprot.2012.067 22743831
20. Chen B, Morales R, Barria MA, Soto C. Estimating prion concentration in fluids and tissues by quantitative PMCA. Nat Methods. 2010;7: 519–520. doi: 10.1038/nmeth.1465 20512142
21. Morales R, Buytaert-Hoefen KA, Gonzalez-Romero D, Castilla J, Hansen ET, Hlavinka D, et al. Reduction of prion infectivity in packed red blood cells. Biochem Biophys Res Commun. 2008;377: 373–378. doi: 10.1016/j.bbrc.2008.09.141 18851948
22. Abid K, Morales R, Soto C. Cellular factors implicated in prion replication. FEBS Lett. 2010;584: 2409–2414. doi: 10.1016/j.febslet.2010.04.040 20412808
23. Pritzkow S, Morales R, Lyon A, Concha-Marambio L, Urayama A, Soto C. Efficient prion disease transmission through common environmental materials. J Biol Chem. 2018. doi: 10.1074/jbc.M117.810747 29330304
24. Pritzkow S, Morales R, Moda F, Khan U, Telling GC, Hoover E, et al. Grass plants bind, retain, uptake, and transport infectious prions. Cell Rep. 2015;11: 1168–1175. doi: 10.1016/j.celrep.2015.04.036 25981035
25. Gonzalez-Romero D, Barria MA, Leon P, Morales R, Soto C. Detection of infectious prions in urine. FEBS Lett. 2008;582: 3161–3166. doi: 10.1016/j.febslet.2008.08.003 18706416
26. O’Rourke KI, Spraker TR, Hamburg LK, Besser TE, Brayton KA, Knowles DP. Polymorphisms in the prion precursor functional gene but not the pseudogene are associated with susceptibility to chronic wasting disease in white-tailed deer. J Gen Virol. 2004;85: 1339–1346. doi: 10.1099/vir.0.79785-0 15105552
27. Duque Velásquez C, Kim C, Herbst A, Daude N, Garza MC, Wille H, et al. Deer Prion Proteins Modulate the Emergence and Adaptation of Chronic Wasting Disease Strains. J Virol. 2015;89: 12362–12373. doi: 10.1128/JVI.02010-15 26423950
28. Race B, Meade-White K, Miller MW, Fox KA, Chesebro B. In vivo comparison of chronic wasting disease infectivity from deer with variation at prion protein residue 96. J Virol. 2011;85: 9235–9238. doi: 10.1128/JVI.00790-11 21697479
29. Johnson CJ, Herbst A, Duque-Velasquez C, Vanderloo JP, Bochsler P, Chappell R, et al. Prion protein polymorphisms affect chronic wasting disease progression. PLoS One. 2011;6: e17450. doi: 10.1371/journal.pone.0017450 21445256
30. Angers R, Christiansen J, Nalls AV, Kang H-E, Hunter N, Hoover E, et al. Structural effects of PrP polymorphisms on intra- and interspecies prion transmission. Proc Natl Acad Sci U S A. 2014;111: 11169–11174. doi: 10.1073/pnas.1404739111 25034251
31. Angers RC, Kang H-E, Napier D, Browning S, Seward T, Mathiason C, et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science (80-). 2010;328: 1154–1158. doi: 10.1126/science.1187107 20466881
32. Morales R. Prion strains in mammals: Different conformations leading to disease. PLoS Pathogens. 2017. doi: 10.1371/journal.ppat.1006323 28683090
33. Morales R, Abid K, Soto C. The prion strain phenomenon: molecular basis and unprecedented features. Biochim Biophys Acta. 2007;1772: 681–691. doi: 10.1016/j.bbadis.2006.12.006 17254754
34. Sarradin P, Melo S, Barc C, Lecomte C, Andréoletti O, Lantier F, et al. Semen from scrapie-infected rams does not transmit prion infection to transgenic mice. Reproduction. 2008;135: 415–418. doi: 10.1530/REP-07-0388 18299435
35. Morales R, Pritzkow S, Hu PP, Duran-Aniotz C, Soto C. Lack of prion transmission by sexual or parental routes in experimentally infected hamsters. Prion. 2013;7: 412–419. doi: 10.4161/pri.26747 24121659
36. Hoinville LJ, Tongue SC, Wilesmith JW. Evidence for maternal transmission of scrapie in naturally affected flocks. Prev Vet Med. 2010;93: 121–128. doi: 10.1016/j.prevetmed.2009.10.013 19945758
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy