Lowbush blueberry fruit yield and growth response to inorganic and organic N-fertilization when competing with two common weed species
Autoři:
Charles Marty aff001; Josée-Anne Lévesque aff001; Robert L. Bradley aff002; Jean Lafond aff003; Maxime C. Paré aff001
Působiště autorů:
Laboratoire d’écologie Végétale et Animale, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
aff001; Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
aff002; Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, Normandin, QC, Canada
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226619
Souhrn
Inorganic N fertilizers are commonly used in commercial blueberry fields; however, this form of N can favor increased weed species’ growth, which can ultimately reduce the benefits of fertilization. We hypothesized that chipped ramial wood (CRW) compost is an effective alternative organic fertilizer for blueberry plants when weeds are present, as ericaceous shrub species are generally more efficient in utilizing organic N than herbaceous weed species. In this study, we measured the growth, fruit yield, and foliar N response of lowbush blueberry (Vaccinium angustifolium Aiton) to an application of 45 kg N ha-1 in the form of organic (CRW) or inorganic N (ammonium sulfate) in two areas of a commercial field colonized by either poverty oat grass (Danthonia spicata (L.) Beauv.) or sweet fern (Comptonia peregrina (L.) Coult.). We also assessed the impact of the fertilization treatments on litter decomposition rates. Contrary to our hypothesis, we found no significant increase in blueberry fruit yield or growth using CRW. By contrast, inorganic N-fertilization increased fruit yield by 70%. The effect was higher in the area colonized by D. spicata (+83%) than by C. peregrina (+45%). Blueberry fruit yield was on average twice higher in the area of the field having D. spicata than C. peregrina, suggesting a stronger competition with the latter. However, the increase in D. spicata density from 0–1 to >25 plants m-2 reduced fruit production by three-fold and strongly impacted vegetative growth in both fertilized and unfertilized plots. The impact of increased C. peregrina density was comparatively much lower, especially on vegetative growth, which was much higher in the area having C. peregrina. These patterns are likely due to a lower competition for N uptake with C. peregrina as this species can derive N from the atmosphere. Interestingly, the higher fruit yield in the area colonized by D. spicata occurred even in plots where the weeds were nearly absent (density of 0–1 plant m-2), revealing the influence of unidentified variables on blueberry fruit yield. We hypothesized that this difference resulted from over-optimal foliar N concentrations in the area colonized by C. peregrina as suggested by the significantly higher foliar N concentrations and by the negative correlation between foliar N concentrations and fruit yields in this area. The possibility of an influence of C. peregrina on flowering and pollination success, as well as of unidentified local site conditions is discussed. The tested N-fertilization treatments did not affect foliar N concentrations or litter decomposition rates. Overall, our results show that ammonium sulfate is very effective at increasing fruit yields but that both fruit yields and the efficiency of the N-fertilization treatment are decreased by increased D. spicata density, especially above 25 plants m-2. Although CRW did not significantly enhance fruit yields in the short term, this fertilizer may have a long-term beneficial effect.
Klíčová slova:
Blueberries – Decomposition – Fertilization – Fertilizers – Fruit crops – Fruits – Weeds – Berries
Zdroje
1. Hall IV, Aalders LE, Nickerson NL, Vander Kloet SP. The biological flora of Canada. 1. Vaccinium angustifolium Ait., Sweet lowbush blueberry. Can Field-Naturalist. 1979;93:415–27.
2. MAPAQ. Monographie de l’industrie du bleuet sauvage au Québec [Internet]. Québec; 2016. Available from: https://www.mapaq.gouv.qc.ca/fr/Publications/Monographiebleuet.pdf
3. Yarborough DE. Establishment and Management of the Cultivated Lowbush Blueberry (Vaccinium angustifolium). Int J Fruit Sci. 2012;12:14–22.
4. Lafond J. Fractionnement de la fertilisation azotée dans la production du bleuet nain sauvage. Can J Soil Sci [Internet]. 2010;90:189–99.
5. Jensen KIN, Yarborough DE. An overview of weed management in the wild lowbush blueberry—past and present. Small Fruits Rev [Internet]. 2004;3:229–55.
6. Penney BG, McRae KB. Herbicidal weed control and crop-year NPK fertilization improves lowbush blueberry (Vaccinium angustifolium Ait.) production. Can J Plant Sci. 2000;80:351–61.
7. Marty C, Lévesque J-A, Bradley RL, Lafond J, Paré MC. Contrasting impacts of two weed species on lowbush blueberry fertilizer nitrogen uptake in a commercial field. PLoS One. 2019;14:e0215253. doi: 10.1371/journal.pone.0215253 30978227
8. Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P. Boreal forest plants take up organic nitrogen. Nature. 1998;392:914–6.
9. Persson J, Högberg P, Ekblad A, Högberg MN, Nordgren A, Näsholm T. Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia. 2003;137:252–7. doi: 10.1007/s00442-003-1334-0 12883986
10. Joanisse GD, Bradley RL, Preston CM, Bending GD. Sequestration of soil nitrogen as tannin–protein complexes may improve the competitive ability of sheep laurel (Kalmia). New Phytol. 2009;181:187–98. doi: 10.1111/j.1469-8137.2008.02622.x 18811620
11. Read DJ. The structure and function of the ericoïd mycorrhizal root. Ann Bot. 1996;77:365–74.
12. Caspersen S, Svensson B, Håkansson T, Winter C, Khalil S, Asp H. Blueberry—Soil interactions from an organic perspective. Sci Hortic (Amsterdam). Elsevier B.V.; 2016;208:78–91.
13. Gagnon B, Simard R, Lalande R, Lafond J. Improvement of soil properties and fruit yield of native lowbush blueberry by papermill sludge addition. Can J Soil Sci [Internet]. 2003;83:1–10.
14. Lafond J. Application of Paper Mill Biosolids, Wood Ash and Ground Bark on Wild Lowbush Blueberry Production. Small Fruits Rev [Internet]. Taylor & Francis; 2004;3:3–10.
15. Warman PR. The effects of pruning, fertilizers, and organic amendments on lowbush blueberry production. Plant Soil [Internet]. 1987;101:67–72.
16. Warman PR, Burnham JC, Eaton LJ. Effects of repeated applications of municipal solid waste compost and fertilizers to three lowbush blueberry fields. Sci Hortic (Amsterdam) [Internet]. Elsevier; 2009 [cited 2019 Jan 22];122:393–8.
17. Lemieux G, Germain D. Ramial chipped wood: the clue to a sustainable fertile soil [Internet]. Québec; 2000.
18. Tremblay J, Beauchamp CJ. Fractionnement de la fertilisation azotée d’appoint à la suite de l’incorporation au sol de bois raméaux fragmentés: modifications de certaines propriétés biologiques et chimiques d’un sol cultivé en pomme de terre. Can J Soil Sci. 1998;78:275–82.
19. Beauchemin S, N’Dayegamiye A, Laverdière MR. Effets d’apport d’amendements ligneux frais et humifiés sur la production de pomme de terre et sur la disponibilité de l’azote en sol sableux. Can J Soil Sci. 1990;70:555–64.
20. Darbyshire SJ, Cayouette J. The biology of Canadian weeds. 92. Danthonia spicata (L.) Beauv. in Roem. & Schult. Can J Plant Sci. 1989;69:1217–33.
21. Hurd TM, Schwintzer CR. Formation of cluster roots and mycorrhizal status of Comptonia peregrina and Myrica pensylvanica in Maine, USA. Physiol Plant. 1997;99:680–9.
22. Hall I V., Aalders LE, Everett FC. The biology of Canadian weeds. 16. Comptonia peregrina (L.) Coult. Can J Plant Sci. 1976;56:147–56.
23. Raymond R, Mailloux A, Dubé A. Pédologie de la région du Lac-Saint-Jean. La Pocatière, Québec; 1965.
24. Hébert M, Chantigny M, N’Dayegamiye A, Côté C. Les engrais de ferme et les matières résiduelles fertilisantes organique. Guid référence en Fertil. Québec, Québec, Canada: Centre de référence en agriculture et agroalimentaire du Québec; 2010. p. 289–344.
25. Isaac RA, Ohnson WC. Determination of total nitrogen in plant tissue, using a block digestor. J Assoc Off Anal Chem. 1976;59:98–100.
26. Dray S, Dufour AB. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20.
27. Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw. 2017;82:1–26.
28. Lenth R V. Least-Squares Means: The R Package lsmeans. J Stat Softw. 2016;69:1–33.
29. Chapin FS, Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-myccorhizal arctic sedge. Nature. 1993;361:150–3.
30. Kielland K. Amino-acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology. 1994;75:2373–83.
31. Jones DL, Kielland K. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol Biochem [Internet]. Pergamon; 2002 [cited 2019 Jan 30];34:209–19.
32. Lipson DA, Monson RK. Plant-microbe competition for soil amino-acids in the alpine tundra: effects of freeze-thaw and dry-rewet events. Oecologia. 1998;113:406–14. doi: 10.1007/s004420050393 28307826
33. Persson J, Näsholm T. Amino acid uptake: a widespread ability among boreal forest plants. Ecol Lett [Internet]. 2001;4:434–8.
34. Nadelhoffer K, Shaver G, Fry B, Giblin A, Johnson L, McKane R. 15N natural abundances and N use by tundra plants. Oecologia [Internet]. 1996;107:386–94. doi: 10.1007/BF00328456 28307268
35. Nasholm T, Persson J. Plant acquisition of organic nitrogen in boreal forests. Physiol Plant [Internet]. 2001;111:419–26. doi: 10.1034/j.1399-3054.2001.1110401.x 11299006
36. Read DJ. Mycorrhizas in ecosystems. Experientia. 1991;47:376–91.
37. Read DJ. The biology of mycorrhiza in the Ericales. Can J Bot. 1983;61:985–1004.
38. Read DJ, Leake JR, Perez-Moreno J. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot Can Bot. 2004;82:1243–63.
39. Persson J, Högberg P, Ekblad A, Högberg MN, Nordgren A, Näsholm T. Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia. 2003;137:252–7. doi: 10.1007/s00442-003-1334-0 12883986
40. Beauchemin S, Laverdière MR, N’dayegamiye A. Effets d’amendements ligneux sur la disponibilité d’azote dans un sol sableux cultivé en pomme de terre. Can J Soil Sci [Internet]. 1992;72:89–95.
41. Retamales JB, Hancock JF. Blueberries. CAB Intern. Crop Prod. Sci. Hortic. Ser. Wallingford, UK; 2012.
42. Lévesque J, Bradley RL, Bellemare M, Lafond J, Paré MC. Predicting weed and lowbush blueberry biomass using the point intercept method. Can J Plant Sci. 2018;4:1–4.
43. Percival D, Sanderson K. Main and Interactive Effects of Vegetative-Year Applications of Nitrogen, Phosphorus, and Potassium Fertilizers on the Wild Blueberry. Small Fruits Rev [Internet]. Taylor & Francis; 2004;3:105–21.
44. Yarborough DE. Factors contributing to the increase in productivity in the wild blueberry industry. Small Fruits Rev. 2004;3:33–43.
45. Eaton L, Sanderson K, Fillmore S. Nova Scotia wild Blueberry soil and leaf nutrient ranges. Int J Fruit Sci. 2009;9:46–53.
46. Lafond J, Ziadi N. Fertilisation azotée et phosphatée dans la production du bleuet nain sauvage au Québec. Can J Plant Sci [Internet]. 2011;91:535–44.
47. Maqbool R, Percival D, Zaman Q, Astatkie T, Adl S, Buszard D. Leaf nutrients ranges and berry yield optimization in response to soil-applied nitrogen, phosphorus and potassium in wild blueberry (Vaccinium angustifolium Ait.). Eur J Hortic Sci. 2017;82:166–79.
48. Lafond J, Ziadi N. Biodisponibilité de l’azote et du phosphore dans les sols de bleuetières du Québec. Can J Soil Sci [Internet]. 2013;93:33–44.
49. Penney BG, Mcrae KB, Bishop GA. Second-crop N-fertilization improves lowbush blueberry (Vaccinium angustifolium Ait.) production. Can J Plant Sci. 2003;83:149–55.
50. Lafond J. Optimum leaf nutrient concentrations of wild lowbush blueberry in Quebec. Can J Plant Sci [Internet]. 2009;89:341–7.
51. Lockhart CL, Langille WM. The mineral content of lowbush blueberry. Can Plant Dis Surv. 1962;42:124–8.
52. Townsend LR, Hall IV. Trends in nutrient levels of lowbush blueberry leaves during four consecutive years of sampling. Nat Can. 1970;97:416–66.
53. Trevett MF. A second approximation of leaf analysis standards for lowbush blueberries. Maine Agric Exp Stn Res Life Sci. 1972;19:15–16.
54. Bentley MD, Leonard DE, Leach S, Reynolds E, Stoddard W, Tomkinson B, et al. Effects of some naturally occuring chemicals and extracts of non-host plants on feeding by spruce budworm larvae (Choristoneura fumiferana). Life Sci Agric Exp Stn Tech Bull. 1982;107.
55. Simpson MJA, Macintosh DF, Cloughley JB, Stuart AE. Past, present and future utilisation of Myrica gale (Myricaceae). Econ Bot. 1996;50:122.
56. Sylvestre M, Pichette A, Lavoie S, Longtin A, Legault J. Composition and cytotoxic activity of the leaf essential oil of Comptonia peregrina (L.) Coulter. Phyther Res. 2007;21:536–40.
57. Hall IV. Floristic changes following the cutting and burning of a woodlot for blueberry production. Can J Agr Sci. 1955;35:142–52.
58. Hall IV, Forsythe FR, Aalders LE, Jackson LP. Physiology of the lowbush blueberry. Econ Bot. 1971;26:68–73.
59. Chandler FB, Mason IC. Blueberry weeds in Maine and their control. Bul. 443. Maine Agr. Expt. Sta., Orono, ME. 1946.
60. Bell DJ, Rowland LJ, Stommel J, Drummond FA. Yield variation among clones of lowbush blueberry as a function of genetic similarity and self-compatibility. J Am Soc Hortic Sci. 2010;135:259–70.
61. Bell DJ, Rowland LJ, Zhang D, Drummond FA. The spatial genetic structure of lowbush blueberry, Vaccinium angustifolium, in four fields in Maine. Botany. 2009;87:932–946.
62. Hancock JF, Lyrene P, Finn CE, Vorsa N, Lobos GA. Blueberries and cranberries. In: Hancock JF, editor. Temp fruit Crop Breed Germplasm to genomics. Springer Science & Business Media; 2008.
63. Knorr AM, Frey SD, Curtis PS. Nitrogen additions and litter decomposition: A meta-analysis. Ecology. 2005;86:3252–7.
64. Melillo JM, Aber JD, Muratore J. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology. 1982;63:621–6.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy