Analysis of center of mass acceleration and muscle activation in hemiplegic paralysis during quiet standing
Autoři:
Wei Wang aff001; Yunling Xiao aff003; Shouwei Yue aff002; Na Wei aff003; Ke Li aff001
Působiště autorů:
Laboratory of Motor Control and Rehabilitation, Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China
aff001; Department of Physical Medicine and Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
aff002; Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
aff003; Suzhou Institute of Shandong University, Suzhou, China
aff004
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226944
Souhrn
Hemiplegic paralysis after stroke may augment postural instability and decrease the balance control ability for standing. The center of mass acceleration (COMacc) is considered to be an effective indicator of postural stability for standing balance control. However, it is less studied how the COMacc could be affected by the muscle activities on lower-limbs in post-stroke hemiplegic patients. This study aimed to examine the effects of hemiplegic paralysis in post-stroke individuals on the amplitude and structural variabilities of COMacc and surface electromyography (sEMG) signals during quiet standing. Eleven post-stroke hemiplegic patients and the same number of gender- and age-matched healthy volunteers participated in the experiment. The sEMG signals of tibialis anterior (TA) and lateral gastrocnemius (LG) muscles of the both limbs, and the COMacc in the anterior-posterior direction with and without visual feedback (VF vs. NVF) were recorded simultaneously during quiet standing. The sEMG and COMacc were analyzed using root mean square (RMS) or standard deviation (SD), and a modified detrended fluctuation analysis based on empirical mode decomposition (EMD-DFA). Results showed that the SD and the scale exponent α of EMD-DFA of the COMacc from the patients were significantly higher than the values from the controls under both VF (p < 0.01) and NVF (p < 0.001) conditions. The RMSs of TA and LG on the non-paretic limbs were significantly higher than those on paretic limbs (p < 0.05) for both the patients and controls (p < 0.05). The TA of both the paretic and non-paretic limbs of the patients showed augmented α values than the TA of the controls (p < 0.05). The α of the TA and LG of non-paretic limbs, and the α of COMacc were significantly increased after removing visual feedback in patients (p < 0.05). These results suggested an increased amplitude variability but decreased structural variability of COMacc, associated with asymmetric muscle contraction between the paretic and the non-paretic limbs in hemiplegic paralysis, revealing a deficiency in integration of sensorimotor information and a loss of flexibility of postural control due to stroke.
Klíčová slova:
Algorithms – Balance and falls – Body limbs – Muscle contraction – Notch signaling – Postural control – stroke – Paralysis
Zdroje
1. Weerdesteyn V, de Niet M, van Duijnhoven HJR, Geurts ACH. Falls in individuals with stroke. Journal of Rehabilitation Research and Development. 2008;45(8):1195–213. doi: 10.1682/jrrd.2007.09.0145 19235120
2. Lisa B, Nicol KB. Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Physical Therapy. 2008;88(5):559–66. doi: 10.2522/ptj.20070205 18292215
3. Harris JE, Eng JJ, Marigold DS, Tokuno CD, Louis CL. Relationship of balance and mobility to fall incidence in people with chronic stroke. Physical Therapy. 2005;85(2):150–8. 15679466
4. Shun S, Masahiro S, Kimitaka N. Interjoint dynamic interaction during constrained human quiet standing examined by induced acceleration analysis. Journal of Neurophysiology. 2013;111(2):313. doi: 10.1152/jn.01082.2012 24089399
5. Naoko O, Shun S, Akio Y, Kimitaka N. Difference in Postural Control during Quiet Standing between Young Children and Adults: Assessment with Center of Mass Acceleration. Plos One. 2015;10(10):e0140235. doi: 10.1371/journal.pone.0140235 26447883
6. Yu E, Abe M, Masani K, Kawashima N, Eto F, Haga N, et al. Evaluation of postural control in quiet standing using center of mass acceleration: Comparison among the young, the elderly, and people with stroke. Archives of Physical Medicine and Rehabilitation. 2008;89(6):1133–9. doi: 10.1016/j.apmr.2007.10.047 18503811
7. Helene C, Rejean H, Michel R, Francois P. Evaluation of postural stability in the elderly with stroke. Archives of Physical Medicine & Rehabilitation. 2004;85(7):1095–101.
8. Corriveau H, Prince F, Hebert R, Raiche M, Tessier D, Maheux P, et al. Evaluation of postural stability in elderly with diabetic neuropathy. Diabetes Care. 2000;23(8):1187. doi: 10.2337/diacare.23.8.1187 10937520
9. Kilby MC, Slobounov SM, Newell KM. Augmented feedback of COM and COP modulates the regulation of quiet human standing relative to the stability boundary. Gait & Posture. 2016;47:18–23. doi: 10.1016/j.gaitpost.2016.03.021 27264397
10. Lemos T, Imbiriba LA, Vargas CD, Vieira TM. Modulation of tibialis anterior muscle activity changes with upright stance width. Journal of Electromyography and Kinesiology. 2015;25(1):168–74. doi: 10.1016/j.jelekin.2014.07.009 25156446
11. Borg F, Finell M, Hakala I, Herrala M. Analyzing gastrocnemius EMG-activity and sway data from quiet and perturbed standing. Journal of Electromyography and Kinesiology. 2007;17(5):622–34. doi: 10.1016/j.jelekin.2006.06.004 16890458
12. Day JT, Lichtwark GA, Cresswell AG. Tibialis anterior muscle fascicle dynamics adequately represent postural sway during standing balance. Journal of Applied Physiology. 2013;115(12):1742–50. doi: 10.1152/japplphysiol.00517.2013 24136108
13. Liao LR, Pang MYC. Effect of Whole-Dody Vibration on Neuromuscular Activation of Leg Muscles during Dynamic Exercises in Individuals with Stroke. Journal of Strength and Conditioning Research. 2017;31(7):1954–62. doi: 10.1519/JSC.0000000000001761 28002180
14. Wen H, Dou Z, Cheng S, Qiu W, Xie L, Yang H. Activity of Thigh Muscles During Static and Dynamic Stances in Stroke Patients: A Pilot Case-Control Study. Topics in Stroke Rehabilitation. 2014;21(2):163–72. doi: 10.1310/tsr2102-163 24710976
15. Garland SJ, Willems DA, Ivanova TD, Miller KJ. Recovery of standing balance and functional mobility after stroke. Arch Phys Med Rehabil. 2003;84(12):1753–9. doi: 10.1016/j.apmr.2003.03.002 14669179
16. Lee D-K, Kim J-S, Kim T-H, Oh J-S. Comparison of the electromyographic activity of the tibialis anterior and gastrocnemius in stroke patients and healthy subjects during squat exercise. Journal of Physical Therapy Science. 2015;27(1):247–9. doi: 10.1589/jpts.27.247 25642084
17. Raja B, Neptune RR, Kautz SA. Coordination of the non-paretic leg during hemiparetic gait: Expected and novel compensatory patterns. Clinical Biomechanics. 2012;27(10):1023–30. doi: 10.1016/j.clinbiomech.2012.08.005 22981679
18. Li K, Wei N, Yue S, Thewlis D, Fraysse F, Immink M, et al. Coordination of digit force variability during dominant and non-dominant sustained precision pinch. Experimental Brain Research. 2015;233(7):2053–60. doi: 10.1007/s00221-015-4276-y 25869742
19. Janna H, Patterson KK, Inness EL, Mcilroy WE, Avril M. Relationship between asymmetry of quiet standing balance control and walking post-stroke. Gait & Posture. 2014;39(1):177–81.
20. Li K, Marquardt TL, Li Z-M. Removal of visual feedback lowers structural variability of inter-digit force coordination during sustained precision pinch. Neuroscience Letters. 2013;545:1–5. doi: 10.1016/j.neulet.2013.04.011 23624025
21. Vaillancourt DE, Newell KM. Changing complexity in human behavior and physiology through aging and disease. Neurobiology of Aging. 2002;23(1):1–11. doi: 10.1016/s0197-4580(01)00247-0 11755010
22. Zhi C, Plamen Ch I, Kun H, Eugene SH. Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;65(1):041107.
23. Nagarajan R, Kavasseri RG. Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise. Physica A Statistical Mechanics & Its Applications. 2005;354(1):182–98.
24. Zhou J, Manor B, Liu D, Hu K, Zhang J, Fang J. The Complexity of Standing Postural Control in Older Adults: A Modified Detrended Fluctuation Analysis Based upon the Empirical Mode Decomposition Algorithm. Plos One. 2013;8(5). doi: 10.1371/journal.pone.0062585 23650518
25. Yeh JR, Fan SZ, Shieh JS. Human heart beat analysis using a modified algorithm of detrended fluctuation analysis based on empirical mode decomposition. Medical Engineering & Physics. 2009;31(1):92–100.
26. Manor B, Costa MD, Hu K, Newton E, Starobinets O, Kang HG, et al. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. Journal of Applied Physiology. 2010;109(6):1786–91. doi: 10.1152/japplphysiol.00390.2010 20947715
27. Collins JJ, De Luca CJ. The effects of visual input on open-loop and closed-loop postural control mechanisms. Experimental Brain Research. 1995;103(1):151–63. doi: 10.1007/bf00241972 7615030
28. Blázquez MT, Anguiano M, Saavedra FAD, Lallena AM, Carpena P. Study of the human postural control system during quiet standing using detrended fluctuation analysis. Physica A Statistical Mechanics & Its Applications. 2009;388(9):1857–66.
29. Huang NE, Shen Z, Long SR, Wu MLC, Shih HH, Zheng QN, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences. 1998;454(1971):903–95.
30. Corriveau H, Hebert R, Prince F, Raiche M. Postural control in the elderly: An analysis of test-retest and interrater reliability of the COP-COM variable. Archives of Physical Medicine and Rehabilitation. 2001;82(1):80–5. doi: 10.1053/apmr.2001.18678 11239290
31. Barbado Murillo D, Sabido Solana R, Vera-Garcia FJ, Gusi Fuertes N, Moreno FJ. Effect of increasing difficulty in standing balance tasks with visual feedback on postural sway and EMG: Complexity and performance. Human Movement Science. 2012;31(5):1224–37. doi: 10.1016/j.humov.2012.01.002 22658508
32. Duarte M, Zatsiorsky VM. Long-range correlations in human standing. Physics Letters A. 2001;283(1–2):124–8. doi: 10.1016/s0375-9601(01)00188-8
33. Phinyomark A, Phukpattaranont P, Limsakul C, Phothisonothai M. Electomyography (EMG) signal classification based on detrended fluctuation analysis. Fluctuation and Noise Letters. 2011;10(3):281–301. doi: 10.1142/s0219477511000570
34. Lindsay TR, Noakes TD, McGregor SJ. Effect of treadmill versus overground running on the structure of variability of stride timing. Perceptual and Motor Skills. 2014;118(2):331–46. doi: 10.2466/30.26.PMS.118k18w8 24897871
35. Ko J-H, Newell KM. Aging and the complexity of center of pressure in static and dynamic postural tasks. Neuroscience Letters. 2016;610:104–9. doi: 10.1016/j.neulet.2015.10.069 26549788
36. Amoud H, Abadi M, Hewson DJ, Michel-Pellegrino V, Doussot M, Duchene J. Fractal time series analysis of postural stability in elderly and control subjects. Journal of Neuroengineering and Rehabilitation. 2007;4. doi: 10.1186/1743-0003-4-12 17470303
37. Sandy MW, Chieh-ling Y, Magder L, Yungher D, Gray V, Mark RW. Impaired motor preparation and execution during standing reach in people with chronic stroke. Neuroscience Letters. 2016;630:38–44. doi: 10.1016/j.neulet.2016.07.010 27436481
38. Pyoria O, Era P, Talvitie U. Relationships between standing balance and symmetry measurements in patients following recent strokes (< = 3 weeks) or older strokes (> = 6 months). Physical Therapy. 2004;84(2):128–36. 14744203
39. Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. Merging of Healthy Motor Modules Predicts Reduced Locomotor Performance and Muscle Coordination Complexity Post-Stroke. Journal of Neurophysiology. 2010;103(2):844–57. doi: 10.1152/jn.00825.2009 20007501
40. Pethick J, Winter SL, Burnley M. Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man. Journal of Physiology-London. 2015;593(8):2085–96. doi: 10.1113/jphysiol.2015.284380 25664928
41. Yang H, Wang J, Zhang H. Changes of sEMG parameters during isometric fatiguing contractions and recovery period. Acta Biophysica Sinica. 2005;21(5):385–90.
42. Dault MC, de Haart M, Geurts ACH, Arts IMP, Nienhuis B. Effects of visual center of pressure feedback on postural control in young and elderly healthy adults and in stroke patients. Human Movement Science. 2003;22(3):221–36. doi: 10.1016/s0167-9457(03)00034-4 12967755
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy