Health conditions associated with overweight in climacteric women
Autoři:
Maria Suzana Marques aff001; Ronilson Ferreira Freitas aff001; Daniela Araújo Veloso Popoff aff001; Fernanda Piana Santos Lima de Oliveira aff002; Maria Helena Rodrigues Moreira aff003; Andreia Maria Araújo Drummond aff004; Dorothéa Schmidt França aff002; Luís Antônio Nogueira dos Santos aff001; Marcelo Eustáquio de Siqueira e Rocha aff001; João Pedro Brant Rocha aff004; Maria Clara Brant Rocha aff005; Maria Fernanda Santos Figueiredo Brito aff001; Antônio Prates Caldeira aff001; Fabiana Aparecida Maria Borborema aff002; Viviane Maria Santos aff002; Josiane Santos Brant Rocha aff001
Působiště autorů:
State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
aff001; Fipmoc University Center (UNIFIPMoc), Montes Claros, Minas Gerais, Brazil
aff002; University of Trás-dos-Montes and Alto Douro, Department of Sports Science, Exercise and Health, Vila Real, Portugal
aff003; Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
aff004; Faculty of Medical Sciences of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
aff005
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0218497
Souhrn
This study aims to investigate the association between health conditions and overweight in climacteric women assisted by primary care professionals. It is a cross-sectional study conducted with 874 women from 40 to 65 years of age, selected by probabilistic sampling between August 2014 and August 2015. In addition to the outcome variable, overweight and obesity, other variables such as sociodemographic, reproductive, clinical, eating and behavioural factors were evaluated. Descriptive analyses of the variables investigated were performed to determine their frequency distributions. Then, bivariate analyses were performed through Poisson regression. For the multivariate analyses, hierarchical Poisson regression was used to identify factors associated with overweight and obesity in the climacteric period. The prevalence of overweight and obesity was 74%. Attending public school (PR: 1.30–95% CI 1.14–1.50), less schooling (PR: 1.11–95% CI 1.01–1.23), gout (PR: 1.18–95% CI 1.16–1.44), kidney disease (PR: 1.18–95% CI 1.05–1.32), metabolic syndrome (MS) (PR: 1.19–95% CI 1.05–1.34) and fat intake (PR: 1.12–95% CI 1.02–1.23) were considered risk factors for overweight. Having the first birth after 18 years of age (PR: 0.89–95% CI 0.82 to 0.97) was shown to be a protective factor for overweight and obesity. The presence of overweight and obesity is associated with sociodemographic, reproductive, clinical and eating habits.
Klíčová slova:
Brazil – Eating habits – Fats – Gout – Kidneys – Obesity – Schools – Women's health
Zdroje
1. Cunha ACNP, Cunha NNP, Barbosa MT. Geriatric teaching in Brazilian medical schools in 2013 and considerations regarding adjustment to demographic and epidemiological transition. Rev Ass Med Bras. 2016; 62(2): 179–183. doi: 10.1590/1806-9282.62.02.179 27167549
2. NCD Risk Factors Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. The Lancet. 2016; 387(10026):1377–96. doi: 10.1016/S0140-6736(16)30054-X
3. Nogueira IAL, da Cruz EJSN, Fontenele AMM, Figueiredo Neto JA. Alterations in postmenopausal plasmatic lipidome. PLoS ONE. 2018; 13 (9): e0203027. doi: 10.1371/journal.pone.0203027 30180197
4. Silveira EA, Vieira LL, Jardim TV, Souza JD. Obesity and its Association with Food Consumption, Diabetes Mellitus, and Acute Myocardial Infarction in the Elderly Arq. Bras. Cardiol. 2016; 107(6): 509–517. doi: 10.5935/abc.20160182 28558083
5. Moley KH, Colditz GA. Effects of obesity on hormonally driven cancer in women. Sci Transl Med. 2016; 8(323): 323ps3. doi: 10.1126/scitranslmed.aad8842 26819193
6. Souza Guerra GE, Junior, Prates Caldeira A, Piana Santos Lima de Oliveira F, Santos Figueiredo Brito MF, de Oliveira Silva Gerra KD, Mendes D’Angelis CE, et al. Quality of life in climacteric women assisted by primary health care. PLoS ONE. 2019;14(2):1–13. doi: 10.1371/journal.pone.0211617 30811409
7. Medeiros de Morais MS, Andrade do Nascimento R, Vieira MCA, Moreira MA, Camara SMAD, Campos Cavalcanti Maciel A et al. Does body image perception relate to quality of life in middle-aged women? PLoS ONE. 2017; 12(9): e0184031. doi: 10.1371/journal.pone.0184031 28926575
8. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância de Doenças e Agravos não Transmissíveis e Promoção da Saúde. Vigitel Brasil 2016: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2016 / Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância de Doenças e Agravos não Transmissíveis e Promoção da Saúde.–Brasília: Ministério da Saúde, 2017. 160p.: il. ISBN 978-85-334-2479-1. Available at: http://portalarquivos2.saude.gov.br/images/pdf/2018/marco/02/vigitel-brasil-2016.pdf.
9. Lui Filho JF, Baccaro LF, Fernandes T, Conde DM, Costa-Paiva L, Pinto Neto AM. Factors associated with menopausal symptoms in women from a metropolitan region in Southeastern Brazil: a population-based household survey. Rev Bras Ginecol Obstet. 2015; 37(4):152–8. doi: 10.1590/SO100-720320150005282 25992497
10. Gonçalves JTT, Silveira MF, Campos MCC, Costa LHR. Overweight and obesity and factors associated with menopause. Ciência & Saúde Coletiva. 2015; 21(4): 1145–56. doi: 10.1590/1413-81232015214.16552015 27076013
11. Andrade MV, Coelho AQ, Xavier Neto M, Carvalho LR, Atun R, Castro MC. Transition to universal primary health care coverage in Brazil: Analysis of uptake and expansion patterns of Brazil's Family Health Strategy (1998–2012). PLoS ONE. 2018; 13(8): e0201723. doi: 10.1371/journal.pone.0201723 30096201
12. The North American Menopause Society (NAMS). Menopause Guidebook. Available at: www.menopause.org. Traduzido pela SOBRAC–Associação Brasileira de Climatério. Guia da Menopausa. Ajudando a mulher climatérica a tomar decisões informadas sobre a sua saúde. 7 ed. São Paulo: 2013. ISBN 978-0-9701251-4-9. Available at: http://sobrac.org.br/media/files/publicacoes/00001261_a12361_leigos_rev2mcowfinal.pdf
13. Szwarcwald CL, Damacena GN. Complex Sampling Design in Population Surveys: Planning and effects on statistical data analysis. Rev. bras. epidemiol. [Internet]. 2008; 11(Suppl 1):38–45. doi: 10.1590/S1415-790X2008000500004
14. Mason C, Xiao L, Imayama I, Duggan C, Wang CY, Korde L, et al. Vitamin D3 supplementation during weight loss: a double-blind randomized controlled trial. Am J Clin Nutr. 2014. doi: 10.3945/ajcn.113.073734 24622804
15. Yan LL, Daviglus ML, Liu K, Pirzada A, Garside DB, Schiffer L, Dyer AR, Greenland P. BMI and health-related quality of life in adults 65 years and older. Obes Res. 2004; 12(1): 69–76. doi: 10.1038/oby.2004.10 14742844
16. Fanelli F, Mezzullo M, Belluomo I, Di Lallo VD, Baccini M, Ibarra Gasparini D et al. Plasma 2-arachidonoylglycerol is a biomarker of age and menopause related insulin resistance and dyslipidemia in lean but not in obese men and women. Mol Metab. 2017; 6(5): 406–415. doi: 10.1016/j.molmet.2017.03.005 28462075
17. Kupperman HS, Blatt MHG. Menopausal indice. J Clin Endocrinol. 1953; 13(1): 688–694.
18. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Jama 2001 May 16; 285(19): 2486–97. doi: 10.1001/jama.285.19.2486 11368702
19. Tamanini JTN, Dambros M, D'Ancona CAL, Palma PCR, Netto NR Jr. Validation of the “International Consultation on Incontinence Questionnaire—Short Form” (ICIQ-SF) for Portuguese. Rev Saúde Pública. 2004;38(3)438–44. doi: 10.1590/s0034-89102004000300015 15243675
20. D'Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53. doi: 10.1161/CIRCULATIONAHA.107.699579 18212285
21. Gorenstein C, Andrade L. Inventário de depressão de Beck: propriedades psicométricas da versão em português. Rev Psiq Clin.1998; 25:245–250.
22. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. doi: 10.1016/0165-1781(89)90047-4 2748771
23. Benedetti TRB, Mazo GZ, Barros MV. Aplicação do Questionário Internacional de Atividade Física para avaliação do nível de atividades físicas de mulheres idosas: validade concorrente e reprodutibilidade teste/reteste. Rev Bras Ciên e Mov. 2004; 12(1):25–33.
24. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502. 4337382
25. Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afiune Neto A et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose– 2017. Arq Bras Cardiol 2017; 109(2Supl.1):1–76. doi: 10.5935/abc.20170121 Available at: http://publicacoes.cardiol.br/2014/diretrizes/2017/02_DIRETRIZ_DE_DISLIPIDEMIAS.pdf
26. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26(1):S5–20. doi: 10.2337/diacare.26.2007.S5
27. Steiner ML, Azevedo LH, Bonacordi CL, Barros AZ, Strufaldi R, Fernandes CE. Avaliação de consumo alimentar, medidas antropométricas e tempo de menopausa de mulheres na pós-menopausa. Rev Bras Ginecol Obstet, 2015; 37(1):16–23. doi: 10.1590/SO100-720320140005138 25607125
28. Karvonen-Gutierrez C, Kim C. Association of Mid-Life Changes in Body Size, Body Composition and Obesity Status with the Menopausal Transition. Healthcare (Basel), 2016; 13;4(3). doi: 10.3390/healthcare4030042 27417630
29. Janssen I, Powell LH, Jasielec MS, Kazlauskaite R. Covariation of change in bioavailable testosterone and adiposity in midlife women. Obesity (Silver Spring), 2015; 23(2): 488–494. doi: 10.1002/oby.20974 25557490
30. Barbalho SM, Bechara MD, Quesada K, Gabaldo MR, Goulart RA, Tofano RJ et al. Metabolic syndrome, atherosclerosis and inflammation: an inseparable triad? J Vasc Bras. 2015; 14(4):319–327. doi: 10.1590/1677-5449.04315
31. Muennig P, Jia H, Lee R, Lubetkin E. I Think Therefore I Am: Perceived Ideal Weight as a Determinant of Health. Am J Public Health 2008; 98(3): 501–506. doi: 10.2105/AJPH.2007.114769 18235062
32. Castelo-Branco C. Clinical aspects and relationships between weight gain, obesity and menopause. Maturitas. 2009; 63 (Suppl 1): S19. doi: 10.1016/S0378-5122(09)70075-1
33. Gershuni V, Li YR, Williams AD, So A, Steel L, Carrigan E, et al. Breast cancer subtype distribution is different in normal weight, overweight, and obese women. Breast Cancer Res Treat. 2017;163(2):375–381. doi: 10.1007/s10549-017-4192-x 28293912
34. Blümel JE, Chedraui P, Aedo S, Fica J, Mezones-Holguín E, Barón G, et al. Obesity and its relation to depressive symptoms and sedentary lifestyle in middle-aged women. Maturitas. 2015; 80(1):100–5. doi: 10.1016/j.maturitas.2014.10.007 25459364
35. Sorpreso ICE, Soares Júnior JM, Fonseca AM, Baracat EC. Female aging. Rev Assoc Med Bras 2015; 61(6):553–556. doi: 10.1590/1806-9282.61.06.553 26841166
36. Skrypnik D, Bogdański P, Zawiejska A, Wender-Ożegowska E. Role of gestational weight gain, gestational diabetes, breastfeeding, and hypertension in mother-to-child obesity transmission. Pol Arch Intern Med. 2019; 129: 267–275. doi: 10.20452/pamw.4426 30688285
37. Rosaneli CF, Auler F, Manfrinato CB, Rosaneli CF, Sganzerla C, Bonatto MG et al. Evaluation of the prevalence and nutritional and social determinants of overweight in a population of schoolchildren: a cross-sectional analysis of 5,037 children. Rev. Assoc. Med. Bras. 2012;58 (4): 472–476. doi: 10.1590/S0104-42302012000400019 22930027
38. Simmonds M, Burch J, Llewellyn A, Griffiths C, Yang H, Owen C. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: a systematic review and meta-analysis. Health Technol Assess. 2015 Jun;19(43):1–336. doi: 10.3310/hta19430 26108433
39. Alves RFS, Faerstein E. Educational inequality in the occurrence of abdominal obesity: Pró-Saúde Study. Rev Saude Publica. 2015;49: 65. doi: 10.1590/S0034-8910.2015049005786 26465669
40. Lins APM, Sichieri R, Coutinho WF, Ramos EG, Peixoto MVM, Fonseca VM. Healthy eating, schooling and being overweight among low-income women. Ciência & Saúde Coletiva. 2013;18(2):357–66. doi: 10.1590/S1413-81232013000200007 23358761
41. Freire RS, Lélis FLO, Fonseca Filho JA, Nepomuceno MO, Silveira MF. Regular physical activity: a population-based study in North Minas Gerais, Brazil. Rev Bras Med Esporte. 2014; 20(5):345–349. doi: 10.1590/1517-86922014200502062
42. Skrypnik D, Bogdański P, Skrypnik K, Mądry E, Karolkiewicz J, Szulińska M, Suliburska J, Walkowiak J. Influence of endurance and endurance-strength training on mineral status in women with abdominal obesity: a randomized trial. Medicine (Baltimore). 2019;98(12):e14909. doi: 10.1097/MD.0000000000014909 30896645
43. Skrypnik K, Bogdariski P, Sobieska M, Suliburska J. The effect of multistrain probiotic supplementation in two doses on iron metabolism in obese postmenopausal women: a randomized trial. Food & Function. 2019; 10:5228–5238. doi: 10.1039/C9FO01006H 31384878
44. Kac G, Velásquez-Meléndez G, Valente JG. Menarche, early pregnancy, and obesity in selected Brazilian women from a health care center in Belo Horizonte, Minas Gerais, Brazil. Cad Saúde Pública. 2003; 19(Suppl. 1):111–8. doi: 10.1590/S0102-311X2003000700012 12886441
45. Bobrow KL, Quigley MA, Green J, Reeves GK, Beral V; Million Women Study Collaborators. Persistent effects of women's parity and breastfeeding patterns on their body mass index: results from the Million Women Study. Int J Obes (Lond). 2013; 37(5):712–7. doi: 10.1038/ijo.2012.76 22777544
46. Sim JH, Chung D, Lim JS, Lee MY, Chung CH, Shin JY, et al. Maternal Age at First Delivery Is Associated with the Risk of Metabolic Syndrome in Postmenopausal Women: From 2008–2010 Korean National Health and Nutrition Examination Survey. PLoS ONE. 2015; 10(5): e0127860. doi: 10.1371/journal.pone.0127860 26010910
47. We JS, Han K, Kwon HS, Kil K. Effect of Maternal Age at Childbirth on Obesity in Postmenopausal Women: A Nationwide Population-Based Study in Korea. Medicine (Baltimore). 2016; 95(19):e3584. doi: 10.1097/MD.0000000000003584 27175656
48. Vladutiu CJ, Siega-Riz AM, Sotres-Alvarez D, Stuebe AM, Ni A, Tabb KM, et al. Parity and Components of the Metabolic Syndrome Among US Hispanic/Latina Women: Results From the Hispanic Community Health Study/Study of Latinos. Circ Cardiovasc Qual Outcomes. 2016; 9 (2 Suppl 1): S62–9. doi: 10.1161/CIRCOUTCOMES.115.002464 26908862
49. Kim JH, Lee SJ. Parity and increased risk of insulin resistance in postmenopausal women: the 2010 Korean National Health and Nutrition Examination Survey. Menopause. 2017;13. doi: 10.1097/GME.0000000000000846 28291026
50. Jung JH, Song GG, Ji JD, Lee YH, Kim JH, Seo YH, et al. Metabolic syndrome: prevalence and risk factors in Korean gout patients. Korean J Intern Med. 2018. doi: 10.3904/kjim.2016.062 27729624
51. Lopes HF, Corrêa-Giannella ML, Consolim-Colombo FM, Egan BM. Visceral adiposity syndrome. Diabetol Metab Syndr. 2016; 8:40. doi: 10.1186/s13098-016-0156-2 27437032
52. Zhang JW, He LJ, Cao SJ, Yang Q, Yang SW, Zhou YJ. Association of serum uric acid and coronary artery disease in premenopausal women. PLoS One. 2014; 9(9):e106130. doi: 10.1371/journal.pone.0106130 25184207
53. Zhang L, Spencer KL, Voruganti VS, Jorgensen NW, Fornage M, Best LG et al. Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations: the PAGE Study. Am J Epidemiol. 2013; 177(9):923–32. doi: 10.1093/aje/kws330 23552988
54. Sesso RC, Lopes AA, Thomé FS, Lugon JR, Martins CT. Brazilian Chronic Dialysis Census 2014. J Bras Nefrol. 2016; 38(1): 54–61. doi: 10.5935/0101-2800.20160009 27049365
55. Stefanska A, Bergmann K, Sypniewska G. Metabolic Syndrome and Menopause: Pathophysiology, Clinical and Diagnostic Significance. Adv Clin Chem. 2015;72:1–75. doi: 10.1016/bs.acc.2015.07.001 26471080
56. Garofalo C, Borrelli S, Minutolo R, Chiodini P, De Nicola L, Conte G. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int. 2017; 91(5):1224–1235. doi: 10.1016/j.kint.2016.12.013 28187985
57. Sharma S, Aggarwal N, Joshi B. Suri V, Badada S. Prevalence of metabolic syndrome in pre- and post-menopausal women: A prospective study from apex institute of North India. J Midlife Health. 2016 Oct-Dec; 7(4): 169–174. doi: 10.4103/0976-7800.195695 28096640
58. Meirelles RMR. Menopause and metabolic syndrome. Arq Bras Endocrinol Metab. 2014;58(2):91–6. doi: 10.1590/0004-2730000002909 24830585
59. Figueiredo Neto JA, Figuerêdo ED, Barbosa JB, Barbosa FF, Costa GRCC, Nina VJS et al. Metabolic Syndrome and Menopause: Cross-Sectional Study in Gynecology Clinic. Arq Bras Cardiol 2010; 95(3): 339–45. doi: 10.1590/s0066-782x2010005000094 20658092
60. Agência Nacional de Saúde Suplementar (Brasil). Diretoria de Normas e Habilitação dos Produtos. Gerência-Geral de Regulação Assistencial. Gerência de Monitoramento Assistencial. Coordenadoria de Informações Assistenciais. Manual de diretrizes para o enfretamento da obesidade na saúde suplementar brasileira [recurso eletrônico]/Agência Nacional de Saúde Suplementar. Diretoria de Normas e Habilitação dos Produtos. Gerência-Geral de Regulação Assistencial. Gerência de Monitoramento Assistencial. Coordenadoria de Informações Assistenciais.–Rio de Janeiro: ANS, 2017. 6.5 MB; ePUB. ISBN 978-85-63059-36-9. Available at: http://www.ans.gov.br/images/Manual_de_Diretrizes_para_o_Enfrentamento_da_Obesidade_na_Sa%C3%BAde_Suplementar_Brasileira.pdf
61. Silver HJ, Kang H, Keil CD, Muldowney JA, Kocalis H, Fazio S, et al. Consuming a balanced high fat diet for 16 weeks improves body composition, inflammation and vascular function parameters in obese premenopausal women. Metabolic. 2014; 63(4):562–73. doi: 10.1016/j.metabol.2014.01.004 24559846
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy