Toxic trajectories under future climate conditions
Autoři:
Richard A. Marcantonio aff001; Sean Field aff002; Patrick M. Regan aff003
Působiště autorů:
The Kroc Institute for International Peace Studies and the Anthropology Department, University of Notre Dame, Notre Dame, IN, United States of America
aff001; The Anthropology Department, the University of Notre Dame, Notre Dame, IN, United States of America
aff002; The Kroc Institute for International Peace Studies and the Political Science Department, University of Notre Dame, Notre Dame, IN, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226958
Souhrn
Extreme weather events, driven by changing climatic conditions, interact with our built environment by distributing—or redistributing—environmental risk and damaging physical infrastructure. We focus on the role of extreme weather events in the distribution of toxic substances within and between residential communities in the largest cities in the United States (US). We explore the impact of projected inland and coastal flooding on the redistribution of toxicity from known contaminated sites, and how patterns of toxic flow change the total population and social demographics of the population at risk from toxic materials. We use the Urban Adaptation Assessment and data on toxic site locations from the US government to evaluate risk of toxin dispersion from flooding in cities and down to the census tract level for the period 2021–2061. We demonstrate that future climate conditions significantly increase the risk of the dispersion of toxins from contaminated sites by 2041.
Klíčová slova:
Census – Climate change – Contaminants – Flooding – Storms – Toxins – United States – Ecological remediation
Zdroje
1. Coumou D, Rahmstorf S. A decade of weather extremes. Nature Climate Change. 2012;2: 491–496. doi: 10.1038/nclimate1452
2. Demski C, Capstick S, Pidgeon N, Sposato RG, Spence A. Experience of extreme weather affects climate change mitigation and adaptation responses. Climatic Change. 2017;140: 149–164. doi: 10.1007/s10584-016-1837-4
3. Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529: 84–87. doi: 10.1038/nature16467 26738594
4. Jones KC, de Voogt P. Persistent organic pollutants (POPs): state of the science. Environmental Pollution. 1999;100: 209–221. doi: 10.1016/s0269-7491(99)00098-6 15093119
5. Maco B, Bardos P, Coulon F, Erickson‐Mulanax E, Hansen LJ, Harclerode M, et al. Resilient remediation: Addressing extreme weather and climate change, creating community value. Remediation Journal. 2018;29: 7–18. doi: 10.1002/rem.21585
6. Mann ME, Rahmstorf S, Kornhuber K, Steinman BA, Miller SK, Coumou D. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events. Scientific Reports. 2017;7: 45242. doi: 10.1038/srep45242 28345645
7. Bacmeister JT, Reed KA, Hannay C, Lawrence P, Bates S, Truesdale JE, et al. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change. 2018;146: 547–560. doi: 10.1007/s10584-016-1750-x
8. Wetzel FT, Kissling WD, Beissmann H, Penn DJ. Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity. Global Change Biology. 2012;18: 2707–2719. doi: 10.1111/j.1365-2486.2012.02736.x 24501050
9. Ogunbode CA, Demski C, Capstick SB, Sposato RG. Attribution matters: Revisiting the link between extreme weather experience and climate change mitigation responses. Global Environmental Change. 2019;54: 31–39. doi: 10.1016/j.gloenvcha.2018.11.005
10. Wing OEJ, Bates PD, Smith AM, Sampson CC, Johnson KA, Fargione J, et al. Estimates of present and future flood risk in the conterminous United States. Environ Res Lett. 2018;13: 034023. doi: 10.1088/1748-9326/aaac65
11. Tabuchi H, Popovich N, Migliozzi B, Lehren AW. Floods Are Getting Worse, and 2,500 Chemical Sites Lie in the Water’s Path. The New York Times. 6 Feb 2018. Available: https://www.nytimes.com/interactive/2018/02/06/climate/flood-toxic-chemicals.html
12. Pralle S. Drawing lines: FEMA and the politics of mapping flood zones. Climatic Change. 2019;152: 227–237. doi: 10.1007/s10584-018-2287-y
13. Kramar DE, Anderson A, Hilfer H, Branden K, Gutrich JJ. A Spatially Informed Analysis of Environmental Justice: Analyzing the Effects of Gerrymandering and the Proximity of Minority Populations to U.S. Superfund Sites. Environmental Justice. 2018;11: 29–39. doi: 10.1089/env.2017.0031
14. Horney JA, Casillas GA, Baker E, Stone KW, Kirsch KR, Camargo K, et al. Comparing residential contamination in a Houston environmental justice neighborhood before and after Hurricane Harvey. PLOS ONE. 2018;13: e0192660. doi: 10.1371/journal.pone.0192660 29420658
15. Personna YR, Geng X, Saleh F, Shu Z, Jackson N, Weinstein MP, et al. Monitoring changes in salinity and metal concentrations in New Jersey (USA) coastal ecosystems Post-Hurricane Sandy. Environ Earth Sci. 2015;73: 1169–1177. doi: 10.1007/s12665-014-3539-4
16. Barry R, Searcey D, Carreyrou J. Sandy Stirs Toxic-Site Worry. Wall Street Journal. 12 Nov 2012. Available: https://www.wsj.com/articles/SB10001424127887324073504578109550624063018
17. WHO. Chemical Releases Caused by Natural Hazard Events and Disasters-Information for public health authorities. Geneva: World Health Orgnaization; 2018 p. 50. Available: https://apps.who.int/iris/bitstream/handle/10665/272390/9789241513395-eng.pdf?ua=1
18. EPA. Cleanups in My Community: Cleaning Up Our Land, Water and Air. Washington, D.C.: U.S. Environmental Protection Agency; 2019. Available: https://ofmpub.epa.gov/apex/cimc/f?p=cimc:map:0:::71
19. UAA. Urban Adaptation Assessment. Notre Dame Global Adaptation Initiative; 2019. Available: https://gain.nd.edu/our-work/urban-adaptation/
20. US EPA O. Superfund. In: US EPA [Internet]. 11 Jul 2014 [cited 28 Jan 2019]. Available: https://www.epa.gov/superfund
21. US EPA. Population Surrounding 1,836 Superfund Remedial Sites. Washington, D.C.: United States Environmental Protection Agency; 2017 p. 3.
22. US EPA. Population Surrounding 3,771 RCRA Corrective Action Sites. Washington, D.C.: U.S. Environmental Protection Agency; 2017 p. 3.
23. US EPA. Population Surrounding US EPA Superfund, RCRA CA, and Brownfield sites. Washington, D.C.: U.S. Environmental Protection Agency; 2017. Available: https://www.epa.gov/sites/production/files/2015-09/documents/weballsites9.28.15.pdf
24. US EPA. Population Surrounding 19,537 Brownfields Sites that Received EPA Funding. Washington, D.C.: U.S. Environmental Protection Agency; 2017 p. 3.
25. IPCC. AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability. UN Intergovernmental Panel on Climate Change; 2014. Available: https://www.ipcc.ch/report/ar5/wg2/
26. USGS. The National Map V1.0. Virginia: USGS; 2019. Available: https://viewer.nationalmap.gov/basic/
27. NYC OpenData. Sandy Inundation Zone. New York: The City of New York; 2019. Available: https://data.cityofnewyork.us/Environment/Sandy-Inundation-Zone/uyj8-7rv5
28. NYC OpenData O. 1 foot Digital Elevation Model. New York: The City of New York; 2019. Available: /City-Government/1-foot-Digital-Elevation-Model-DEM-/dpc8-z3jc, /City-Government/1-foot-Digital-Elevation-Model-DEM-/dpc8-z3jc
29. Field S. Data and Analysis repository for Marcantonio et al., 2019: Toxicity Travels in a Changing Climate. In: GitHub [Internet]. 2019. Available: https://github.com/sfield2/Marcantonio_et_al_2019
30. US Census. US Household Income: 2017. Washington, D.C.: US Census Bureau; 2018 p. 11.
31. Kiaghadi A, Rifai HS. Physical, Chemical, and Microbial Quality of Floodwaters in Houston Following Hurricane Harvey. Environ Sci Technol. 2019 [cited 22 Apr 2019]. doi: 10.1021/acs.est.9b00792 30955326
32. Mandigo AC, DiScenza DJ, Keimowitz AR, Fitzgerald N. Chemical contamination of soils in the New York City area following Hurricane Sandy. Environ Geochem Health. 2016;38: 1115–1124. doi: 10.1007/s10653-015-9776-y 26486130
33. US EPA. Site Profile—Hurricane Florence Response—EPA OSC Response. Washington, D.C.: U.S. Environmental Protection Agency; 2018. Available: https://response.epa.gov/site/site_profile.aspx?site_id=13923
34. US EPA. Status of Superfund Sites in Areas Affected by Harvey. Washington, D.C.: U.S. Environmental Protection Agency; 2017 Sep. Available: https://www.epa.gov/newsreleases/status-superfund-sites-areas-affected-harvey
35. Smith A, Lott N, Houston T, Shein K, Crouch J, Enloe J. U.S. Billion-Dollar Weather & Climate Disasters 1980–2018. Silver Springs, Maryland: National Oceanic and Atmospheric Administration; 2018 pp. 1–14.
36. NOAA. Hurricane Harvey Tropical Cyclone Report. Miami, Florida: NOAA National Hurricane Center; 2018 p. 77.
37. NWS. Record of Houston Weather. Silver Springs, Maryland: National Weather Service; 2019.
38. Hubbard S. Precipitation During Hurricane Harvey. Madison, Wisconsin: Cooperative Institute for Meteorological Statellite Studies; 2017.
39. Garner AJ, Mann ME, Emanuel KA, Kopp RE, Lin N, Alley RB, et al. Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. PNAS. 2017;114: 11861–11866. doi: 10.1073/pnas.1703568114 29078274
40. IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. New York: International Panel on Climate Change; 2019 p. 1170.
41. Kulp SA, Strauss BH. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat Commun. 2019;10: 1–12. doi: 10.1038/s41467-018-07882-8
42. Mulvihill G. Natural disasters will be a priority for incoming governors. In: AP NEWS [Internet]. 24 Nov 2018 [cited 24 Nov 2018]. Available: https://apnews.com/75437c1f0aef4cd680f89ff323864fa6
43. US EPA. Site Profile—San Jacinto River Waste Pits TCRA—EPA OSC Response. Washington, D.C.: U.S. Environmental Protection Agency; 2019. Available: https://response.epa.gov/site/site_profile.aspx?site_id=6534
44. US EPA. Superfund: Transforming Communities. Washington, D.C.: U.S. Environmental Protection Agency; 2018 p. 24. Available: https://semspub.epa.gov/work/HQ/100001884.pdf
45. Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N (Nil), et al. The Lancet Commission on pollution and health. The Lancet. 2018;391: 462–512. doi: 10.1016/S0140-6736(17)32345-0
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy