Improving distribution models of riparian vegetation with mobile laser scanning and hydraulic modelling
Autoři:
Tua Nylén aff001; Elina Kasvi aff001; Jouni Salmela aff001; Harri Kaartinen aff001; Antero Kukko aff002; Anttoni Jaakkola aff002; Juha Hyyppä aff002; Petteri Alho aff001
Působiště autorů:
Department of Geography and Geology, University of Turku, Turun yliopisto, Finland
aff001; Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research institute FGI, National Land Survey of Finland, Masala, Finland
aff002; Aalto University, Department of Built Environment, Aalto, Finland
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225936
Souhrn
This study aimed at illustrating how direct measurements, mobile laser scanning and hydraulic modelling can be combined to quantify environmental drivers, improve vegetation models and increase our understanding of vegetation patterns in a sub-arctic river valley. Our results indicate that the resultant vegetation models successfully predict riparian vegetation patterns (Rho = 0.8 for total species richness, AUC = 0.97 for distribution) and highlight differences between eight functional species groups (Rho 0.46–0.84; AUC 0.79–0.93; functional group-specific effects). In our study setting, replacing the laser scanning-based and hydraulic modelling-based variables with a proxy variable elevation did not significantly weaken the models. However, using directly measured and modelled variables allows relating species patterns to e.g. stream power or the length of the flood-free period. Substituting these biologically relevant variables with proxies mask important processes and may reduce the transferability of the results into other sites. At the local scale, the amount of litter is a highly important driver of total species richness, distribution and abundance patterns (relative influences 49, 72 and 83%, respectively) and across all functional groups (13–57%; excluding lichen species richness) in the sub-arctic river valley. Moreover, soil organic matter and soil water content shape vegetation patterns (on average 16 and 7%, respectively). Fluvial disturbance is a key limiting factor only for lichen, bryophyte and dwarf shrub species in this environment (on average 37, 6 and 10%, respectively). Fluvial disturbance intensity is the most important component of disturbance for most functional groups while the length of the disturbance-free period is more relevant for lichens. We conclude that striving for as accurate quantifications of environmental drivers as possible may reveal important processes and functional group differences and help anticipate future changes in vegetation. Mobile laser scanning, high-resolution digital elevation models and hydraulic modelling offer useful methodology for improving correlative vegetation models.
Klíčová slova:
Flooding – Lasers – Lichenology – Nonvascular plants – Rivers – Shrubs – Species diversity – Surface water
Zdroje
1. Robertson MP, Peter CI, Villet MH, Ripley BS. Comparing models for predicting species’ potential distributions: a case study using correlative and mechanistic predictive modelling techniques. Ecological Modelling. 2003;164: 153–167. doi: 10.1016/S0304-3800(03)00028-0
2. Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecology Letters. 2005;8: 993–1009. doi: 10.1111/j.1461-0248.2005.00792.x
3. Pearson RG, Dawson TP. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography. 2003;12: 361–371. doi: 10.1046/j.1466-822X.2003.00042.x
4. Dormann CF. Promising the future? Global change projections of species distributions. Basic and Applied Ecology. 2007;8: 387–397. doi: 10.1016/j.baae.2006.11.001
5. McGill BJ. Matters of scale. Science. 2010;328: 575–576. doi: 10.1126/science.1188528 20431001
6. Austin MP, Van Niel KP. Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography. 2011;38: 1–8. doi: 10.1111/j.1365-2699.2010.02416.x
7. Austin MP. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling. 2002;157: 101–118. doi: 10.1016/S0304-3800(02)00205-3
8. Araújo MB, Guisan A. Five (or so) challenges for species distribution modelling. Journal of Biogeography. 2006;33: 1677–1688. doi: 10.1111/j.1365-2699.2006.01584.x
9. Naiman RJ, Décamps H, Pollock M. The role of riparian corridors in maintaining regional biodiversity. Ecological Applications. 1993;3: 209–212. doi: 10.2307/1941822 27759328
10. Meave J, Kellman M. Maintenance of rain forest diversity in riparian forests of tropical savannas: Implications for species conservation during Pleistocene drought. Journal of Biogeography. 1994;21: 121–135. doi: 10.2307/2845467
11. Stohlgren T, Coughenour M, Chong G, Binkley D, Kalkhan M, Schell L, et al. Landscape analysis of plant diversity. Landscape Ecology. 1997;12: 155–170.
12. Naiman RJ, Decamps H. The ecology of interfaces: Riparian zones. Annual Review of Ecology and Systematics. 1997;28: 621. doi: 10.1146/annurev.ecolsys.28.1.621
13. Pollock MM, Naiman RJ, Hanley TA. Plant species richness in riparian wetlands—A test of biodiversity theory. Ecology. 1998;79: 94–105.
14. Gould WA, Walker MD. Plant communities and landscape diversity along a Canadian Arctic river. Journal of Vegetation Science. 1999;10: 537–548. doi: 10.2307/3237188
15. Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, et al. Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. AMBIO. 2004;33: 404–417.
16. Saarela JM, Sokoloff PC, Bull RD. Vascular plant biodiversity of the lower Coppermine River valley and vicinity (Nunavut, Canada): an annotated checklist of an Arctic flora. PeerJ. 2017;5: e2835. doi: 10.7717/peerj.2835 28194307
17. Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography. 2012;21: 393–404. doi: 10.1111/j.1466-8238.2011.00686.x
18. Wood KA, Stillman RA, Clarke RT, Daunt F, O’Hare MT. Understanding plant community responses to combinations of biotic and abiotic factors in different phases of the plant growth cycle. PLoS One. 2012;7: e49824. doi: 10.1371/journal.pone.0049824 23166777
19. Mansikkaniemi H, Mäki O. Paleochannels and recent changes in the Pulmankijoki valley, northern Lapland. Fennia—International Journal of Geography. 1990;168: 137–152.
20. Kasvi E, Vaaja M, Kaartinen H, Kukko A, Jaakkola A, Flener C, et al. Sub-bend scale flow–sediment interaction of meander bends—A combined approach of field observations, close-range remote sensing and computational modelling. Geomorphology. 2015;238: 119–134. doi: 10.1016/j.geomorph.2015.01.039
21. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews. 2013;88: 15–30. doi: 10.1111/j.1469-185X.2012.00235.x 22686347
22. Rykiel EJ. Towards a definition of ecological disturbance. Aust J Ecol. 1985;10: 361–365. doi: 10.1111/j.1442-9993.1985.tb00897.x
23. Poff NL. Why disturbances can be predictable—a perspective on the definition of disturbance in streams. J N Am Benthol Soc. 1992;11: 86–92. doi: 10.2307/1467885
24. Borics G, Varbiro G, Padisak J. Disturbance and stress: different meanings in ecological dynamics? Hydrobiologia. 2013;711: 1–7. doi: 10.1007/s10750-013-1478-9
25. Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecological Modelling. 2000;135: 147–186. doi: 10.1016/S0304-3800(00)00354-9
26. Soberon J, Peterson AT. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics. 2005;2: 1–10. doi: 10.17161/bi.v2i0.4
27. Kadereit JW, Körner C, Kost B, Sonnewald U. Strasburger − Lehrbuch der Pflanzenwissenschaften. Berlin, Heidelberg: Springer; 2014.
28. Körner C. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist. 2006;172: 393–411. doi: 10.1111/j.1469-8137.2006.01886.x 17083672
29. Norby RJ, Zak DR. Ecological lessons from Free-Air CO2 Enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics. 2011;42: 181–203. doi: 10.1146/annurev-ecolsys-102209-144647
30. Inauen N, Körner C, Hiltbrunner E. No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Global Change Biology. 2012;18: 985–999. doi: 10.1111/j.1365-2486.2011.02584.x
31. Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, et al. Central European hardwood trees in a high‐CO2 future: synthesis of an 8‐year forest canopy CO2 enrichment project. Journal of Ecology. 2013;101: 1509–1519. doi: 10.1111/1365-2745.12149
32. Grime JP. Control of species diversity in herbaceous vegetation. Journal of Environmental Management. 1973;1: 151–167.
33. Huston M. Ageneral hypothesis of species diversity. The American Naturalist. 1979;113: 81–101. doi: 10.1086/283366
34. Facelli JM, Pickett STA. Plant litter: Its dynamics and effects on plant community structure. Botanical Review. 1991;57: 1–32. doi: 10.1007/BF02858763
35. Mod HK, Scherrer D, Luoto M, Guisan A, Scheiner S. What we use is not what we know: environmental predictors in plant distribution models. Journal of Vegetation Science. 2016;27: 1308–1322. doi: 10.1111/jvs.12444
36. Nylén T, Luoto M. Primary succession, disturbance and productivity drive complex species richness patterns on land uplift beaches. Journal of Vegetation Science. 2015;26: 267–277. doi: 10.1111/jvs.12232
37. Nilsson C, Grelsson G, Johansson M, Sperens U. Patterns of plant species richness along riverbanks. Ecology. 1989;70: 77–84. doi: 10.2307/1938414
38. Vartapetian BB, Jackson MB. Plant adaptations to anaerobic stress. Annals of Botany. 1997;79: 3–20. doi: 10.1093/oxfordjournals.aob.a010303
39. Vervuren P, Blom C, De Kroon H. Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. Journal of Ecology. 2003;91: 135–146. doi: 10.1046/j.1365-2745.2003.00749.x
40. Bull WB. Threshold of critical power in streams. GSA Bulletin. 1979;90: 453.
41. Bendix J. Stream power influence on southern Californian riparian vegetation. Journal of Vegetation Science. 1999;10: 243–252. doi: 10.2307/3237145
42. Beeson CE, Doyle PF. Comparison of bank erosion at vegetated and non-vegetated channel bends. Journal of the American Water Resources Association. 1995;31: 983–990. doi: 10.1111/j.1752-1688.1995.tb03414.x
43. Araujo Calçada E, Lenoir J, Plue J, Broeckx L, Closset-Kopp D, Hermy M, et al. Spatial patterns of water-deposited seeds control plant species richness and composition in riparian forest landscapes. Landscape Ecology. 2015;30: 2133–2146. doi: 10.1007/s10980-015-0236-y
44. Bertness MD, Callaway R. Positive interactions in communities. Trends in Ecology & Evolution. 1994;9: 191–193. doi: 10.1016/0169-5347(94)90088-4
45. Nylén T, le Roux PC, Luoto M. Biotic interactions drive species occurrence and richness in dynamic beach environments. Plant Ecology. 2013;214: 1455–1466. doi: 10.1007/s11258-013-0266-y
46. Mod H, Heikkinen R, le Roux P, Väre H, Luoto M. Contrasting effects of biotic interactions on richness and distribution of vascular plants, bryophytes and lichens in an arctic-alpine landscape. Polar Biol. 2016;39: 649–657. doi: 10.1007/s00300-015-1820-y
47. Gurnell A. Plants as river system engineers. Earth Surface Processes and Landforms. 2014;39: 4–25. doi: 10.1002/esp.3397
48. Tewksbury JJ, Lloyd JD. Positive interactions under nurse-plants: Spatial scale, stress gradients and benefactor size. Oecologia. 2001;127: 425–434. doi: 10.1007/s004420000614 28547113
49. Ingerpuu N, Vellak K, Liira J, Pärtel M. Relationships between species richness patterns in deciduous forests at the north Estonian limestone escarpment. Journal of Vegetation Science. 2003;14: 773–780.
50. Squires L, Van der Valk A G. Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Canadian Journal of Botany. 1992;70: 1860–1867. doi: 10.1139/b92-230
51. Sand-Jensen K, Frost-Christensen H. Plant growth and photosynthesis in the transition zone between land and stream. Aquatic Botany. 1999;63: 23–35. doi: 10.1016/S0304-3770(98)00107-7
52. He JB, Bögemann GM, van de Steeg H M, Rijnders J, Voesenek L, Blom C. Survival tactics of Ranunculus species in river floodplains. Oecologia. 1999;118: 1–8. doi: 10.1007/s004420050696 20135154
53. Kukko A, Andrei C, Salminen V, Kaartinen H, Chen Y, Rönnholm P, et al. Road environment mapping system of the Finnish Geodetic Institute–FGI Roamer. Proceedings of the ISPRS Workshop Laser Scanning 2007 and SilviLaser 2007. 2007.
54. Hyyppä J, Jaakkola A, Hyyppa H, Kaartinen H, Kukko A, Holopainen M, et al. Map updating and change detection using vehicle-based laser scanning. 2009 Joint Urban Remote Sensing Event. 2009: 1–6.
55. Kasvi E, Vaaja M, Alho P, Hyyppä H, Hyyppä J, Kaartinen H, et al. Morphological changes on meander point bars associated with flow structure at different discharges. Earth Surface Processes and Landforms. 2013;38: 577–590. doi: 10.1002/esp.3303
56. Lane SN, Westaway RM, Murray Hicks D. Estimation of erosion and deposition volumes in a large, gravel‐bed, braided river using synoptic remote sensing. Earth Surface Processes and Landforms. 2003;28: 249–271. doi: 10.1002/esp.483
57. Lane SN, Bradbrook KF, Richards KS, Biron PA, Roy AG. The application of computational fluid dynamics to natural river channels: three-dimensional versus two-dimensional approaches. Geomorphology. 1999;29: 1–20. doi: 10.1016/S0169-555X(99)00003-3
58. Rodriguez J, Bombardelli F, García M, Frothingham K, Rhoads B, Abad J. High-resolution numerical simulation of flow through a highly sinuous river reach. Water Resources Management. 2004;18: 177–199.
59. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. The Journal of Animal Ecology. 2008;77: 802. doi: 10.1111/j.1365-2656.2008.01390.x 18397250
60. Main AR, Michel NL, Headley JV, Peru KM, Morrissey CA. Ecological and landscape drivers of neonicotinoid insecticide detections and concentrations in Canada’s prairie wetlands. Environmental Science & Technology. 2015;49: 8367. doi: 10.1021/acs.est.5b01287 26098364
61. Lassueur T, Joost S, Randin CF. Very high resolution digital elevation models: Do they improve models of plant species distribution? Ecological Modelling. 2006;198: 139–153. doi: 10.1016/j.ecolmodel.2006.04.004
62. Hannam M, Moskal L. Terrestrial laser scanning reveals seagrass microhabitat structure on a tideflat. Remote Sensing. 2015;7: 3037–3055. doi: 10.3390/rs70303037
63. Billings WD. Arctic and alpine vegetations: Similarities, differences, and susceptibility to disturbance. BioScience. 1973;23: 697–704. doi: 10.2307/1296827
64. le Roux PC, Virtanen R, Heikkinen RK, Luoto M. Biotic interactions affect the elevational ranges of high‐latitude plant species. Ecography. 2012;35: 1048–1056. doi: 10.1111/j.1600-0587.2012.07534.x
65. Kukko A, Kaartinen H, Hyyppä J, Chen Y. Multiplatform approach to mobile laser scanning. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2012;XXXIX-B5: 483–488. doi: 10.5194/isprsarchives-XXXIX-B5-483-2012
66. Gower ST, Kucharik CJ, Norman JM. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment. 1999;70: 29–51. doi: 10.1016/S0034-4257(99)00056-5
67. Vaaja M, Hyyppä J, Kukko A, Kaartinen H, Hyyppä H, Alho P. Mapping topography changes and elevation accuracies using a mobile laser scanner. Remote Sensing. 2011;3: 587–600. doi: 10.3390/rs3030587
68. Kasvi E, Alho P, Lotsari E, Wang Y, Kukko A, Hyyppä H, et al. Two-dimensional and three-dimensional computational models in hydrodynamic and morphodynamic reconstructions of a river bend: sensitivity and functionality. Hydrological Processes. 2015;29: 1604–1629. doi: 10.1002/hyp.10277
69. Lewin J, Brewer PA. Predicting channel patterns. Geomorphology. 2001;40: 329–339. doi: 10.1016/S0169-555X(01)00061-7
70. Fu P, Rich PM. A geometric solar radiation model with applications in agriculture and forestry. Computers and Electronics in Agriculture. 2002;37: 25–35. doi: 10.1016/S0168-1699(02)00115-1
71. ESRI. ArcGIS Desktop. 2015;10.3.1.
72. Fielding AH, Bell JF. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation. 1997;24: 38–49. doi: 10.1017/S0376892997000088
73. le Roux PC, Lenoir J, Pellissier L, Wisz MS, Luoto M. Horizontal, but not vertical, biotic interactions affect fine-scale plant distribution patterns in a low-energy system. Ecology. 2013;94: 671–682. doi: 10.1890/12-1482.1 23687893
74. Franklin J, Miller JA. Mapping species distributions. Cambridge, UK: Cambridge University Press; 2009.
75. Friedman JH. Greedy function approximation: A gradient boosting machine. The Annals of Statistics. 2001;29: 1189–1232. doi: 10.1214/aos/1013203451
76. Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950;37: 17. doi: 10.2307/2332142 15420245
77. McCullagh PJ, Nelder JA. Generalized linear models. 2nd ed. London, UK: Chapman and Hall / CRC Press; 1989.
78. Hastie T, Tibshirani R. Generalized additive models. Statistical Science. 1986;1: 297–310. doi: 10.1214/ss/1177013604
79. Fotheringham AS, Charlton ME, Brunsdon C. Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environment and Planning A: Economy and Space. 1998;30: 1905–1927. doi: 10.1068/a301905
80. R Development Core Team. R: a language and environment for statistical computing. 2017;3.4.1.
81. Hijmans RJ, Phillips S, Leathwick J, Elith J. dismo: Species distribution modeling. R package version 1.1–4. 2017. https://cran.r-project.org/web/packages/dismo/index.html.
82. Greenwell B, Boehmke B, Cunningham J, GBM Developers. gbm: Generalized boosted regression models. R package version 2.1.3. 2017. https://cran.r-project.org/web/packages/gbm/index.html.
83. Paradis E, Blomberg S, Bolker B, Brown J, Claude J, Cuong CS, et al. ape: Analyses of phylogenetics and evolution. R package version 5.2. 2018. https://cran.r-project.org/web/packages/ape/index.html.
84. Tyers M. riverdist: River network distance computation and applications. R package version 0.15.0. 2017. https://cran.r-project.org/web/packages/riverdist/index.html.
85. Revelle W. psych: Procedures for psychological, psychometric, and personality research. R package version 1.8.10. 2018.
86. Wood S. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. R package version 1.8–24. 2018. https://cran.r-project.org/web/packages/mgcv/index.html.
87. Bivand R. spgwr: Geographically weighted regression. R package version 0.6–32. 2017. https://cran.r-project.org/web/packages/spgwr/index.html.
88. Ovaskainen O, Hottola J, Siitonen J. Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology. 2010;91: 2514–2521.
89. Leong RC, Friess DA, Crase B, Lee WK, Webb EL. High-resolution pattern of mangrove species distribution is controlled by surface elevation. Estuarine Coastal and Shelf Science. 2018;202: 185–192. doi: 10.1016/j.ecss.2017.12.015
90. Voesenek Laurentius A C J, Bailey-Serres J. Flood adaptive traits and processes: an overview. New Phytologist. 2015;206: 57–73. doi: 10.1111/nph.13209 25580769
91. Colmer TD, Winkel A, Pedersen O. A perspective on underwater photosynthesis in submerged terrestrial wetland plants. AoB PLANTS. 2011;2011: plr030. doi: 10.1093/aobpla/plr030 22476500
92. Nilsson C, Xiong S, Johansson ME, Vought L. Effects of leaf-litter accumulation on riparian plant diversity across Europe. Ecology. 1999;80: 1770–1775. doi: 10.2307/176567
93. Nilsson C, Grelsson G. The effects of litter displacement on riverbank vegetation. Canadian Journal of Botany. 1990;68: 735–741. doi: 10.1139/b90-097
94. Cobby DM, Mason DC, Horritt MS, Bates PD. Two-dimensional hydraulic flood modelling using a finite-element mesh decomposed according to vegetation and topographic features derived from airborne scanning laser altimetry. Hydrol Process. 2003;17: 1979–2000.
95. Flener C, Vaaja M, Jaakkola A, Krooks A, Kaartinen H, Kukko A, et al. Seamless mapping of river channels at high resolution using mobile LiDAR and UAV-photography. Remote Sensing. 2013;5: 6382–6407. doi: 10.3390/rs5126382
96. Omasa K, Hosoi F, Uenishi TM, Shimizu Y, Akiyama Y. Three-dimensional modeling of an urban park and trees by combined airborne and portable on-ground scanning LIDAR remote sensing. Environmental Modeling & Assessment. 2008;13: 473–481. doi: 10.1007/s10666-007-9115-5
97. Puttonen E, Jaakkola A, Litkey P, Hyyppa J. Tree classification with fused mobile laser scanning and hyperspectral data. Sensors. 2011;11: 5158–5182. doi: 10.3390/s110505158 22163894
98. Swatantran A, Dubayah R, Roberts D, Hofton M, Blair JB. Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sensing of Environment. 2011;115: 2917–2930. doi: 10.1016/j.rse.2010.08.027
99. Karrenberg S, Kollmann J, Edwards PJ, Gurnell AM, Petts GE. Patterns in woody vegetation along the active zone of a near-natural Alpine river. Basic and Applied Ecology. 2003;4: 157–166. doi: 10.1078/1439-1791-00123
100. Schickhoff U, Walker MD, Walker DA. Riparian willow communities on the Arctic Slope of Alaska and their environmental relationships: A classification and ordination analysis. Phytocoenologia. 2002;32: 145–204. doi: 10.1127/0340-269X/2002/0032-0145
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy