Cognitive bias modification for energy drink cues
Autoři:
Eva Kemps aff001; Marika Tiggemann aff001; Mikaela Cibich aff001; Aleksandra Cabala aff001
Působiště autorů:
School of Psychology, Flinders University, Adelaide, Australia
aff001
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226387
Souhrn
Energy drink consumption is increasing worldwide, especially among young adults, and has been associated with physical and mental health problems. In two experiments, we tested the prediction that energy drink consumption is in part driven by biased cognitive processing (attentional and approach biases), with a view to modifying these to reduce consumption. Young adults (18–25 years) who regularly consume energy drinks completed the dot probe (Exp.1; N = 116) or approach-avoidance task (Exp.2; N = 110) to measure attentional and approach bias for energy drink cues, respectively. They then underwent a cognitive bias modification protocol where they were trained to direct their attention away from pictures of energy drink cans (Exp.1), or to push a joystick away from themselves in response to these pictures (Exp.2). Following a post-training assessment of attentional (Exp.1) or approach bias (Exp.2), energy drink consumption was measured by an ostensible taste test. Regular energy drink consumers showed both an attentional and an approach bias for energy drink cues. Cognitive bias modification successfully reduced both biases. However, neither attentional nor approach bias modification significantly reduced energy drink intake. The results lend some support to incentive sensitisation theory which emphasises the role of biased decision-making processes related to addictive behaviours.
Klíčová slova:
Addiction – Alcohol consumption – Attention – Beverages – Caffeine – Decision making – Chocolate – Mental health and psychiatry
Zdroje
1. Statista (2016). Sales volume of energy drinks worldwide 2015/2018. (www.statista.com/statistics/639965/sales-volume-energy-drinks-worldwide/)
2. Mintel (2012). Energy Drink Report. (store.mintel.com/energy-drinks-and-energy-shots-us-june-2012)
3. Malinauskas BM, Aeby VG, Overton RF, Carpenter-Aeby T, Barber-Heidal K. A survey of energy drink consumption patterns among college students. Nutr J. 2007;6: 35–41. doi: 10.1186/1475-2891-6-35 17974021
4. Reid JL, McCrory C, White CM, Martineau C, Vanderkooy P, Fenton N, Hammond D. Consumption of caffeinated energy drinks among youth and young adults in Canada. Prev Med Rep. 2017;5: 65–70. doi: 10.1016/j.pmedr.2016.11.012 27920973
5. Souza DB, Del Coso J, Casonatto J, Polito MD. Acute effects of caffeine-containing energy drinks on physical performance: A systematic review and meta-analysis. Eur J Nutr. 2016;56: 13–27. doi: 10.1007/s00394-016-1331-9 27757591
6. Alford C, Cox H, Wescott R. The effects of red bull energy drink on human performance and mood. Amino Acids. 2001;21: 139–150. doi: 10.1007/s007260170021 11665810
7. Ali F, Rehman H, Babayan Z, Stapleton D, Divya-Devi J. Energy drinks and their adverse health effects: A systematic review of the current evidence. Postgrad Medicine. 2015;127: 308–322.
8. Al-Shaar L, Vercammen K, Lu C, Richardson S, Tamez M, Mattei J. Health effects and public health concerns of energy drink consumption in the United States: A mini-review. Front Public Health. 2017;5: Article 225.
9. Richards G, Smith AP. A review of energy drinks and mental health, with a focus on stress, anxiety, and depression. J Caffeine Res. 2016;6: 49–63. doi: 10.1089/jcr.2015.0033 27274415
10. Juliano LM, Griffiths RR. A critical review of caffeine withdrawal: Empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology. 2004;176: 1–29. doi: 10.1007/s00213-004-2000-x 15448977
11. Heckman MA, Sherry K, Gonzalez de Mejia E. Energy drinks: An assessment of their market size, consumer demographics, ingredient profile, functionality, and regulations in the United States. Compr Rev Food Sci Food Saf. 2010;9: 303–317.
12. International Energy Drinks Conference (2014). Statement of Concern. (10times.com/international-energy-drinks-conference)
13. Robinson TE, Berridge KC. The neural basis of craving: An incentive-sensitization theory of addiction. Brain Res Rev. 1993;18: 247–291. doi: 10.1016/0165-0173(93)90013-p 8401595
14. Robinson TE, Berridge KC. Incentive-sensitization and addiction. Addiction. 2001;96: 103–14. doi: 10.1046/j.1360-0443.2001.9611038.x 11177523
15. Townshend JM, Duka T. Attentional bias associated with alcohol cues: Differences between heavy and occasional social drinkers. Psychopharmacology. 2001;157: 67–74. doi: 10.1007/s002130100764 11512045
16. Palfai TP, Ostafin BD. Alcohol-related motivational tendencies in hazardous drinkers: Assessing implicit responses tendencies using the modified-IAT. Behav Res Ther. 2003;41: 1149–1162. doi: 10.1016/s0005-7967(03)00018-4 12971937
17. Waters AJ, Shiffman S, Bradley BP, Mogg K. Attentional shifts to smoking cues in smokers. Addiction. 2003;98: 1409–1417. doi: 10.1046/j.1360-0443.2003.00465.x 14519178
18. Wiers CE, Kühn S, Javadi AH, Korucuoglu O, Wiers RW, Walter H, Gallinat J, Bermpohl F. Automatic approach bias towards smoking cues is present in smokers but not in ex-smokers. Psychopharmacology. 2013;229: 187–197. doi: 10.1007/s00213-013-3098-5 23604335
19. Cousijn J, Goudriaan AE, Wiers RW. Reaching out towards cannabis: Approach-bias in heavy cannabis users predicts changes in cannabis use. Addiction. 2011;106: 1667–1674. doi: 10.1111/j.1360-0443.2011.03475.x 21518067
20. Franken IHA, Kroon LY, Wiers RW, Jansen A. Selective cognitive processing of drug cues in heroin dependence. J Psychopharmacol. 2000;14: 395–400. doi: 10.1177/026988110001400408 11198058
21. Kemps E, Tiggemann M. Attentional bias for craving-related (chocolate) food cues. Exp Clin Psychopharmacol. 2009;17: 425–433. doi: 10.1037/a0017796 19968407
22. Schumacher SE, Kemps E, Tiggemann M. Bias modification training can alter approach bias and chocolate consumption. Appetite. 2016;96: 219–224. doi: 10.1016/j.appet.2015.09.014 26375357
23. Stafford LD, Yeomans MR. Caffeine deprivation state modulates coffee consumption but not attentional bias for caffeine related stimuli. Behav Pharmacol. 2005;16: 559–571. doi: 10.1097/01.fbp.0000181595.08868.25 16170233
24. Stafford LD, Wright C, Yeomans MR. The drink remains the same: Implicit positive associations in high but not moderate or non-caffeine users. Psychol Addict Behav. 2010;24: 274–281. doi: 10.1037/a0019097 20565153
25. Yeomans MR, Javaherian S, Tovey HM, Stafford LD. Attentional bias for caffeine-related stimuli in high but not moderate or non-caffeine consumers. Psychopharmacology. 2005;181: 477–485. doi: 10.1007/s00213-005-0004-9 15983788
26. Attwood AS, O’Sullivan H, Leonards U, Mackintosh B, Munafo MR. Attentional bias training and cue reactivity in cigarette smokers. Addiction. 2008;103: 1875–1882. doi: 10.1111/j.1360-0443.2008.02335.x 19032536
27. Kakoschke N, Kemps E, Tiggemann M. Attentional bias modification encourages healthy eating. Eat Behav. 2014;15: 120–124. doi: 10.1016/j.eatbeh.2013.11.001 24411764
28. Kemps E, Tiggemann M, Orr J, Grear J. Attentional re-training can reduce chocolate consumption. J Exp Psychol Applied. 2014;20: 94–102.
29. Schoenmakers T, Wiers RW, Jones BT, Bruce G, Jansen ATM. Attentional re-training decreases attentional bias in heavy drinkers without generalization. Addiction. 2007;102: 399–405. doi: 10.1111/j.1360-0443.2006.01718.x 17298647
30. Wiers RW, Rinck M, Kordts R, Houben K, Strack F. Retraining automatic action-tendencies to approach alcohol in hazardous drinkers. Addiction. 2010;105: 279–287. doi: 10.1111/j.1360-0443.2009.02775.x 20078486
31. Field M, Eastwood B. Experimental manipulation of attentional bias increases the motivation to drink. Psychopharmacology. 2005;183: 350–357. doi: 10.1007/s00213-005-0202-5 16235080
32. Sharbanee JM, Hu L, Stritzke WGK, Wiers RW, Rinck M, MacLeod C. The effect of approach/avoidance training on alcohol consumption is mediated by change in alcohol action tendency. PloS One. 2014;9: e85855. doi: 10.1371/journal.pone.0085855 24465750
33. Werthmann J, Field M, Roefs A, Nederkoorn C, Jansen A. Attention bias for chocolate increases chocolate consumption: An attention bias modification study. J Behav Ther and Exp Psychiatry. 2014;45: 136–143.
34. Becker D, Jostmann NB, Wiers RW, Holland RW. Approach avoidance training in the eating domain: Testing the effectiveness across three single session studies. Appetite. 2015;85: 58–65. doi: 10.1016/j.appet.2014.11.017 25447011
35. Dickson H, Kavanagh DJ, MacLeod C. The pulling power of chocolate: Effects of approach-avoidance training on approach bias and consumption. Appetite. 2016;99: 46–51. doi: 10.1016/j.appet.2015.12.026 26725150
36. Field M., Duka T., Eastwood B., Child R., Santarcangelo M., & Gayton M. (2007). Experimental manipulation of attentional biases in heavy drinkers: Do the effects generalise? Psychopharmacology, 192, 593–608. doi: 10.1007/s00213-007-0760-9 17361393
37. Hardman CA, Rogers PJ, Etchells KA, Houstoun KVE, Munafo MR. The effects of food-related attentional bias training on appetite and food intake. Appetite. 2013;71: 295–300. doi: 10.1016/j.appet.2013.08.021 24025548
38. Beard C, Sawyer AT, Hofmann SG. Efficacy of attention bias modification using threat and appetitive stimuli: A meta-analytic review. Behav Ther. 2012;43: 724–740. doi: 10.1016/j.beth.2012.01.002 23046776
39. Kakoschke N, Kemps E, Tiggemann M. Approach bias modification training and consumption: A review of the literature. Addict Behav. 2017;64: 21–28. doi: 10.1016/j.addbeh.2016.08.007 27538198
40. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–191. doi: 10.3758/bf03193146 17695343
41. MacLeod C, Rutherford E, Campbell L, Ebsworthy G, Holker L. Selective attention and emotional vulnerability: assessing the causal basis of their association through the experimental manipulation of attentional bias. J Abnorm Psychol. 2002;111:107–123. 11866165
42. Jones A, Button E, Rose AK, Robinson E, Christiansen P, Di Lemma L, Field M. The ad-libitum alcohol 'taste test': secondary analyses of potential confounds and construct validity. Psychopharmacology. 2016;233:917–924. doi: 10.1007/s00213-015-4171-z 26680342
43. Robinson E, Haynes A, Hardman CA, Kemps E, Higgs S, Jones A. The bogus taste test: Validity as a measure of laboratory food intake. Appetite. 2017;116:223–231. doi: 10.1016/j.appet.2017.05.002 28476629
44. Kakoschke N, Kemps E, Tiggemann M. Combined effects of cognitive bias for food cues and poor inhibitory control on unhealthy food intake. Appetite. 2015;87: 358–364. doi: 10.1016/j.appet.2015.01.004 25592403
45. Rinck M, Becker ES. Approach and avoidance in fear of spiders. J Behav Ther and Exp Psychiatry. 2007;38: 105–120.
46. Terry-McElrath YM, O’Malley PM, Johnston LD. Energy drinks, soft drinks and substance use among United States secondary school students. J Addict Med. 2014;8: 6–13. doi: 10.1097/01.ADM.0000435322.07020.53 24481080
47. Kemps E, Tiggemann M, Elford J. Sustained effects of attentional re-training on chocolate consumption. J Behav Ther Exp Psychiatry. 2015;49: 94–100. doi: 10.1016/j.jbtep.2014.12.001 25537425
48. Fadardi JS, Cox WM. Reversing the sequence: Reducing alcohol consumption by overcoming alcohol attentional bias. Drug Alcohol Depend. 2009;101: 137–145. doi: 10.1016/j.drugalcdep.2008.11.015 19193499
49. Kakoschke N, Kemps E, Tiggemann M. The effect of combined avoidance and control training on implicit food evaluation and choice. J Behav Ther and Exp Psychiatry. 2017;55: 99–105.
50. Veling H, Aarts H, Stroebe W. Using stop signals to reduce impulsive choices for palatable unhealthy foods. Br J Health Psychol. 2013;18: 354–368. doi: 10.1111/j.2044-8287.2012.02092.x 23017096
51. Wiers RW, Becker D, Holland R, Moggi F, Lejuez CW, Yield A. Cognitive Motivational Processes Underlying Addiction Treatment. In: Kopetz CE, Lejuez CW, editors. Addiction. Psychology Press; 2016. pp. 201–236. doi: 10.1111/add.13521
52. Wiers RW, Boffo M, Field M. What’s in a trial? On the importance of distinguishing between experimental lab studies and randomized controlled trials: The case of cognitive bias modification and alcohol use disorders. J Stud Alcohol Drugs. 2018;79:333–343. 29885138
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy