Higher neuron densities in the cerebral cortex and larger cerebellums may limit dive times of delphinids compared to deep-diving toothed whales
Autoři:
Sam H. Ridgway aff001; Robert H. Brownson aff003; Kaitlin R. Van Alstyne aff004; Robert A. Hauser aff005
Působiště autorů:
National Marine Mammal Foundation, San Diego, California, United States of America
aff001; Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, United States of America
aff002; Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, California, United States of America
aff003; National Marine Mammal Foundation, San Diego, California, United States of America
aff004; Department of Neurology, University of South Florida, Tampa, Florida, United States of America
aff005
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226206
Souhrn
Since the work of Tower in the 1950s, we have come to expect lower neuron density in the cerebral cortex of larger brains. We studied dolphin brains varying from 783 to 6215g. As expected, average neuron density in four areas of cortex decreased from the smallest to the largest brain. Despite having a lower neuron density than smaller dolphins, the killer whale has more gray matter and more cortical neurons than any mammal, including humans. To begin a study of non-dolphin toothed whales, we measured a 596g brain of a pygmy sperm whale and a 2004g brain of a Cuvier’s beaked whale. We compared neuron density of Nissl stained cortex of these two brains with those of the dolphins. Non-dolphin brains had lower neuron densities compared to all of the dolphins, even the 6215g brain. The beaked whale and pygmy sperm whale we studied dive deeper and for much longer periods than the dolphins. For example, the beaked whale may dive for more than an hour, and the pygmy sperm whale more than a half hour. In contrast, the dolphins we studied limit dives to five or 10 minutes. Brain metabolism may be one feature limiting dolphin dives. The brain consumes an oversized share of oxygen available to the body. The most oxygen is used by the cortex and cerebellar gray matter. The dolphins have larger brains, larger cerebellums, and greater numbers of cortex neurons than would be expected given their body size. Smaller brains, smaller cerebellums and fewer cortical neurons potentially allow the beaked whale and pygmy sperm whale to dive longer and deeper than the dolphins. Although more gray matter, more neurons, and a larger cerebellum may limit dolphins to shorter, shallower dives, these features must give them some advantage. For example, they may be able to catch more elusive individual high-calorie prey in the upper ocean.
Klíčová slova:
Central nervous system – Cerebellum – Cerebral cortex – Dolphins – Killer whales – Mammals – Neurons – Physiological parameters
Zdroje
1. Robin ED. The evolutionary advantages of being stupid. Perspect Biol Med. 1973;16: 369–379. doi: 10.1353/pbm.1973.0060 4705071
2. Ridgway SH. Diving by cetaceans. In: Brubakk AO, Kanwisher JW, Sundness G, editors. Diving in animals and man. Trondheim, Norway: The Royal Norwegian Society of Science and Letters; 1986. pp 33–62.
3. Hockett CF. In search of Jove’s brow. Am Speech. 1978;53: 243–313.
4. Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14: 724–738. doi: 10.1016/j.cmet.2011.08.016 22152301
5. Herculano-Houzel S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS One. 2011;6: e17514. doi: 10.1371/journal.pone.0017514 21390261
6. Isler K, van Schaik CP. The expensive brain: a framework for explaining evolutionary changes in brain size. J Hum Evol. 2009;57: 392–400. doi: 10.1016/j.jhevol.2009.04.009 19732937
7. Ridgway SH, Houser D, Finneran JJ, Carder DA, Keogh M, Van Bonn W, et al. Functional imaging of dolphin brain metabolism and blood flow. J Exp Biol. 2006;209: 2902–2910. doi: 10.1242/jeb.02348 16857874
8. Houser DS, Moore PW, Johnson S, Lutmerding B, Branstetter BK, Ridgway SH, et al. Relationship of blood flow and metabolism to acoustic processing centers of the dolphin brain. J Acoust Soc Am. 2010;128: 1460–1466. doi: 10.1121/1.3442572 20815480
9. Noren SR, Williams TM. Body size and skeletal muscle myoglobin of cetaceans: adaptations for maximizing dive duration. Comp Biochem Physiol A. 2000;126: 181–191.
10. Marino L, Sol D, Toren K, Lefebvre L. Does diving limit brain size in cetaceans? Mar Mamm Sci. 2006;22: 413–425.
11. Poth C, Fung C, Güntürkün O, Ridgway SH, Oelschläger HHA. Neuron numbers in sensory cortices of five delphinids compared to a physeterid, the pygmy sperm whale. Brain Res Bull. 2005;66: 357–360. doi: 10.1016/j.brainresbull.2005.02.001 16144614
12. Breese D, Tershy BR. Relative abundance of Cetacea in the Canal de Ballenas, Gulf of California. Mar Mamm Sci. 1993;9: 319–324.
13. Barlow JL, Forney KA, Von Saunder A, Urban-Ramirez J. A Report of Cetacean Acoustic Detection and Dive Interval Studies (CADDIS) Conducted in the Southern Gulf of California, 1995. National Oceanic and Atmospheric Administration Technical Memorandum, National Marine Fisheries Service SFSC, Department of Commerce, La Jolla, CA. 1997.
14. Scott MD, Hohn AA, Westgate AJ, Nicolas JR, Whitaker BR, Campbell WB. A note on the release and tracking of a rehabilitated pygmy sperm whale (Kogia breviceps). J Cetacean Res Manag. 2001;3: 87–94.
15. Pabst D, McLellan WA, Rommel SA. How to build a deep diver: the extreme morphology of mesoplodonts. Integr Comp Biol. 2016;56: 1337–1348. doi: 10.1093/icb/icw126 27940620
16. Johnson M, Madsen PT, Zimmer WMX, Aguilar de Soto N, Tyack PL. Beaked whales echolocate on prey. Proc R Soc B. 2004;271: S383–S386. doi: 10.1098/rsbl.2004.0208 15801582
17. Ridgway SH, Au WWL. Hearing and echolocation in dolphins. Encyclopedia of Neuroscience. 2009;4: 1031–1039.
18. Au WWL. The sonar of dolphins. New York: Springer; 1993.
19. Soldevilla MS, McKenna MF, Wiggins SM, Shadwick RE, Cranford TW, Hildebrand JA. Cuvier’s beaked whale (Ziphius cavirostris) head tissues: physical properties and CT imaging. J Exp Biol. 2005;208: 2319–2332. doi: 10.1242/jeb.01624 15939773
20. Jensen FH, Bejder L, Wahlberg M, Madsen PT. Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild. J Exp Biol. 2009;212: 1078–1086. doi: 10.1242/jeb.025619 19329740
21. Ridgway SH, Moore PW, Carder DA, Romano TA. Forward shift of feeding buzz components of dolphins and belugas during associative learning reveals a likely connection to reward expectation, pleasure and brain dopamine activation. J Exp Biol. 2014;217: 2910–2919. doi: 10.1242/jeb.100511 25122919
22. Wisniewska DM, Johnson M, Nachtigall PE, Madsen PT. Buzzing during biosonar-based interception of prey in the delphinids Tursiops truncatus and Pseudorca crassidens. J Exp Biol. 2014;217: 4279–4282. doi: 10.1242/jeb.113415 25394631
23. McCormick JG, Wever EG, Palin J, Ridgway SH. Sound conduction in the dolphin ear. J Acoust Soc Am. 1970;48: 1418–1428.
24. McCormick JG, Wever EG, Ridgway SH, Palin J. Sound reception in the porpoise as it relates to echolocation. In: Busnel RG, Fish JF, editors. Animal sonar systems. New York: Springer; 1980. pp 449–467.
25. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21: 1133–1145. doi: 10.1097/00004647-200110000-00001 11598490
26. Hof PR, Van der Gucht E. Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec. 2007;290: 1–31.
27. Butti C, Janeway C, Townshend C, Wicinski B, Reidenberg J, Ridgway S, et al. The neocortex of cetartiodactyls: I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Brain Struct Funct. 2014;220: 3339–3368. doi: 10.1007/s00429-014-0860-3 25100560
28. Cozzi B, Huggenberger S, Oelschläger H. Anatomy of dolphins: insights into body structure and function. San Diego: Academic Press; 2016.
29. Kruger L. The thalamus of the dolphin (Tursiops truncatus) and comparison with other mammals. J Comp Neurol. 1959;111: 133–194.
30. Kruger L. Specialized features of the cetacean brain. In: Norris KS, editor. Whales, dolphins, and porpoises. Berkeley: University of California Press; 1966. pp 232–254.
31. Morgane PJ, McFarland WL, Jacobs MS. The limbic lobe of the dolphin brain: a quantitative cytoarchitectonic study. J Hirnforsch. 1982;23: 465–552. 7161482
32. Jacobs MS, Galaburda AM, McFarland WL, Morgane PJ. The insular formations of the dolphin brain: quantitative cytoarchitectonic studies of the insular component of the limbic lobe. J Comp Neurol. 1984;225: 396–432. doi: 10.1002/cne.902250307 6725651
33. Raghanti MA, Wicinski B, Meierovich R, Warda T, Dickstein D, Reidenberg JS, et al. A comparison of the cortical structure of the bowhead whale (Balaena mysticetus), a basal mysticete, with other cetaceans. Anat Rec. 2018. doi: 10.1002/ar.23991 30332717
34. Elias H, Schwartz D. Surface areas of the cerebral cortex of mammals determined by stereological methods. Science. 1969;166: 111–113. doi: 10.1126/science.166.3901.111 4897390
35. Ridgway SH, Brownson RH. Relative brain sizes and cortical surface areas in odontocetes. Acta Zool Fenn. 1984;172: 149–152.
36. Haug H. Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat. 1987;180: 126–142. doi: 10.1002/aja.1001800203 3673918
37. Ridgway SH, Carlin KP, Van Alstyne KR, Hanson AC, Tarpley RJ. Comparison of dolphins’ body and brain measurements with four other groups of cetaceans reveals great diversity. Brain Behav Evol. 2017;88: 235–257.
38. Tower DB. Structural and functional organization of mammalian cerebral cortex: the correlation of neurone density with brain size. Cortical neurone density in the fin whale (Balaenoptera physalus L.) with a note on the cortical neurone density in the Indian elephant. J Comp Neurol. 1954;101: 19–51. doi: 10.1002/cne.901010103 13211853
39. Hawkins A, Olszewski J. Glia/nerve cell index for cortex of the whale. Science. 1957;126: 76–77. doi: 10.1126/science.126.3263.76 13442648
40. Garey LJ, Leuba G. A quantitative study of neuronal and glial numerical density in the visual cortex of the bottlenose dolphin: evidence for a specialized subarea and changes with age. J Comp Neurol. 1986;247: 491–496. doi: 10.1002/cne.902470408 3722447
41. Manger PR. An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev. 2006;81: 293–338. doi: 10.1017/S1464793106007019 16573845
42. Eriksen N, Pakkenberg B. Total neocortical cell number in the mysticete brain. Anat Rec. 2007;290: 83–95.
43. Oelschläger HHA, Oelschläger JS. Brain. In: Perrin WF, Würsin B, Thewissen JGM, editors. Encyclopedia of marine mammals. 2nd ed. San Diego: Academic Press; 2009. pp 134–149.
44. Kern A, Siebert U, Cozzi B, Hof PR, Oelschläger HHA. Stereology of the neocortex in odontocetes: qualitative, quantitative, and functional implications. Brain Behav Evol. 2011;77: 79–90. doi: 10.1159/000323674 21358169
45. Mortensen HS, Pakkenberg B, Dam M, Dietz R, Sonne C, Mikkelsen B, et al. Quantitative relationships in delphinid neocortex. Front Neuroanat. 2014;8: 132. doi: 10.3389/fnana.2014.00132 25505387
46. Brownson RH, Klein AW, Ridgway SH. Regional cortical layer thicknesses in the dolphin brain. Anat Rec. 1981;199: A38–A39.
47. Brownson RH, Ridgway SH, Hauser RA, Kline AW. Comparative cytoarchitecture of cerebral-cortex in odontocetes with special emphasis on symmetry. Anat Rec. 1984;208: A20–A24.
48. Brownson RH, Ridgway SH, Hauser RA. Comparative cytoarchitecture of cerebral-cortex in odontocetes with special emphasis on symmetry. Anat Rec. 1985;211: 27A.
49. Tyack PL, Johnson M, Aguilar Soto N, Sturlese A, Madsen PT. Extreme diving of beaked whales. J Exp Biol. 2006;209: 4238–4253. doi: 10.1242/jeb.02505 17050839
50. Schorr GS, Falcone EA, Moretti DJ, Andrews RD. First long-term behavioral records from Cuvier’s beaked whales (Ziphius cavirostris) reveal record-breaking dives. PLoS One. 2014;9: e92633. doi: 10.1371/journal.pone.0092633 24670984
51. Zhang K, Sejnowski TJ. A universal scaling law between gray matter and white matter of cerebral cortex. Proc Nat Acad Sci USA. 2000;97: 5621–5626. doi: 10.1073/pnas.090504197 10792049
52. Gompertz RHC. Specific gravity of the brain. J Physiol. 1902;27: 459–462. doi: 10.1113/jphysiol.1902.sp000884 16992590
53. Kesarev VS, Malofeeva LI. Structural organization of the dolphin motor cortex. Neurosci Trans. 1969;3: 33–39.
54. Ridgway SH, Brownson RH. Brain size and symmetry in three dolphin genera. Anat Rec. 1979;193: 664.
55. Glezer II, Hof PR, Morgane PJ. Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains. Brain Res. 1992;595: 181–188. doi: 10.1016/0006-8993(92)91047-i 1467964
56. Wright A, Scadeng M, Stec D, Dubowitz R, Ridgway S, St. Leger J. Neuroanatomy of the killer whale (Orcinus orca): a magnetic resonance imaging investigation of structure with insights on function and evolution. Brain Struct Funct. 2017;222: 417–436. doi: 10.1007/s00429-016-1225-x 27119362
57. Herculano-Houzel S, Catania K, Manger PR, Kaas JH. Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain Behav Evol. 2015a;86: 145–163.
58. Lange W. Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res. 1975;157: 115–124. doi: 10.1007/bf00223234 804353
59. Marino L, Sudheimer KD, Murphy TL, Davis KK, Pabst DA, McLellan WA, et al. Anatomy and three-dimensional reconstructions of the brain of a bottlenose dolphin (Tursiops truncatus) from magnetic resonance images. Anat Rec. 2001;264: 397–414. doi: 10.1002/ar.10018 11745095
60. Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia. 2014;62: 1377–1391. doi: 10.1002/glia.22683 24807023
61. Knopf JP, Hof PR, Oelschläger HHA. The neocortex of Indian River dolphins (genus Platanista): comparative, qualitative and quantitative analysis. Brain Behav Evol. 2016;88: 93–110. doi: 10.1159/000448274 27732977
62. Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, et al. Evolution of increased glia–neuron ratios in the human frontal cortex. Proc Nat Acad Sci. 2006;103: 13606–13611. doi: 10.1073/pnas.0605843103 16938869
63. Deitmer JW. A role for CO2 and bicarbonate transporters in metabolic exchanges in the brain. J Neurochem. 2002; 80: 721–726. doi: 10.1046/j.0022-3042.2002.00765.x 11948234
64. Marino L, Rilling JK, Lin SK, Ridgway SH. Relative volume of the cerebellum in dolphins and comparison with anthropoid primates. Brain Behav Evol. 2000;56: 204–211. doi: 10.1159/000047205 11154999
65. Ridgway SH, Hanson AC. Sperm whales and killer whales with the largest brains of all toothed whales show extreme differences in cerebellum. Brain Behav Evol. 2014;83: 266–274. doi: 10.1159/000360519 24852603
66. Kielhorn CE, Dillaman RM, Kinsey ST, McLellan WA, Gay DM, Dearolf JL, et al. Locomotor muscle profile of a deep (Kogia breviceps) versus shallow (Tursiops truncatus) diving cetacean. J Morphol. 2013;274: 663–675. doi: 10.1002/jmor.20124 23355398
67. Gulyás AI, Buzsáki G, Freund TF, Hirase H. Populations of hippocampal inhibitory neurons express different levels of cytochrome c. Europe J Neuro. 2006;23: 2581–2594.
68. Snyder GK. Respiratory adaptations in diving mammals. Resp Physiol. 1983;54: 269–294.
69. Roth G, Dicke U. Evolution of the brain and intelligence. Trends Cog Sci. 2005;9: 250–257.
70. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32: 413–434. doi: 10.1146/annurev.neuro.31.060407.125606 19555291
71. Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum. 2012;11: 505–525. doi: 10.1007/s12311-011-0321-y 22068584
72. Fox KC, Muthukrishna M, Shultz S. The social and cultural roots of whale and dolphin brains. Nature ecology & evolution. 2017;11:1699.
73. Jacobs B, Harland T, Kennedy D, Schall M, Wicinski B, Butti C, Hof PR, Sherwood CC, Manger PR. The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis). Brain Struct Funct. 2015; 220: 2851–72. doi: 10.1007/s00429-014-0830-9 25048683
74. Gur RC, Packer IK, Hungerbuhler JP, Reivich M, Obrist WD, Amarnek WS, et al. Differences in the distribution of gray and white matter in human cerebral hemispheres. Science. 1980;207: 1226–1228. doi: 10.1126/science.7355287 7355287
75. Fields RD. White matter matters. Sci Am. 2008;298: 54–61.
76. Pakkenberg B, Gundersen HJG. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol. 1997;384: 312–320. 9215725
77. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B. Neocortical glial cell numbers in human brains. Neurobiol Aging. 2008;29: 1754–1762. doi: 10.1016/j.neurobiolaging.2007.04.013 17544173
78. Evans WE. Orientation behavior of delphinids: radio telemetric studies. Annals of the New York Academy of Sciences. 1971;188: 142–160. doi: 10.1111/j.1749-6632.1971.tb13094.x 5288851
79. Ponganis PJ, Kooyman GL, Ridgway SH. Comparative diving physiology. In: Brubakk ANT, Neumann TS, editors. Bennet and Elliott’s physiology and medicine of diving. 5th ed. Edinburgh: Saunders, Elsevier Science Ltd; 2003. pp 211–226.
80. Stewart BS. Diving behavior. In: Perrin WF, Würsig B, Thewissen JGM, editors. Encyclopedia of marine mammals. 2nd ed. San Diego: Academic Press; 2009. pp 321–326.
81. Herculano-Houzel S, Lent R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci. 2005;25: 2518–2521. doi: 10.1523/JNEUROSCI.4526-04.2005 15758160
82. Herculano-Houzel S, von Bartheld CS, Miller DJ, Kaas JH. How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology. Cell Tissue Res. 2015b;360: 29–42.
83. Herculano-Houzel S. The human advantage: a new understanding of how our brain became remarkable. Cambridge: MIT Press; 2016.
84. Walløe S, Eriksen N, Dabelsteen T, Pakkenberg B. A neurological comparative study of the harp seal (Pagophilus groenlandicus) and harbor porpoise (Phocoena phocoena) brain. Anat Rec. 2010;293: 2129–2135.
85. Bahney J, von Bartheld CS. Validation of the isotropic fractionator: comparison with unbiased stereology and DNA extraction for quantification of glial cells. J Neurosci Methods. 2014;222: 165–174. doi: 10.1016/j.jneumeth.2013.11.002 24239779
86. Miller DJ, Balaram P, Young NA, Kaas JH. Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex. Front Neuroanat. 2014;8: 36. doi: 10.3389/fnana.2014.00036 24904305
87. Garey LJ, Takacs J, Revishchin AV, Hamori J. Quantitative distribution of GABA-immunoreactive neurons in cetacean visual cortex is similar to that in land mammals. Brain Res. 1989;485: 278–284. doi: 10.1016/0006-8993(89)90571-4 2720413
88. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3: 31. doi: 10.3389/neuro.09.031.2009 19915731
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy