#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Area extraction and spatiotemporal characteristics of winter wheat–summer maize in Shandong Province using NDVI time series


Autoři: Chao Dong aff001;  Gengxing Zhao aff002;  Yuanwei Qin aff003;  Hong Wan aff001
Působiště autorů: College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shan Dong, China aff001;  College of Resources and Environment, Shandong Agricultural University, Tai’an, Shan Dong, China aff002;  Center for Spatial Analysis, College of Atmospheric and Geographic Sciences, University of Oklahoma, Norman, Oklahoma, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0226508

Souhrn

The use of remote sensing to rapidly and accurately obtain information on the spatiotemporal distribution of large-scale wheat and maize acreage is of great significance for improving the level of food production management and ensuring food security. We constructed a MODIS-NDVI time series dataset, combined linear interpolation and the Harmonic Analysis of Time Series algorithm to smooth the time series data curve, and classified the data with random forest algorithms. The results show that winter wheat–summer maize planting areas were mainly distributed in the western plains, southern region, and north-eastern part of the middle mountainous regions while the eastern hilly regions were less distributed and scattered. The winter wheat–summer maize planting areas in the study area continued to grow from 2004–2016, with the most significant growth in the northern part of the western plains and Yellow River Delta. The spatial planting probability reflected the planting core area and showed an intensive planting pattern. During the study period, the peak value and time for the NDVI of the winter wheat were significantly different and showed an increasing trend, while these parameters for the summer maize were relatively stable with little change. Therefore, we mapped a spatial distribution of the winter wheat and summer maize, using the time series data pre-processing synthesis and phenology curve random forest classification methods. Through precision analysis, we obtained satisfactory results, which provided a straightforward and efficient method to monitor the winter wheat and summer maize.

Klíčová slova:

Cereal crops – Crops – Data processing – Maize – Planting – Remote sensing – Statistical data – Wheat


Zdroje

1. Zhang F, Wang J, Zhang W, Cui Z, Ma W, Chen X, et al. Nutrient use Efficiencies of Major Cereal Crops in China and Measures for Improvement. ACTA PEDOLOGICA SINICA. 2008;(05):915–24.

2. Fu Z, Cai Y, Yang Y, Dai E. Research on the relationship of cultivated land change and food security in China. Journal of Natural Resources. 2001;(04):313–9.

3. Lobell DB, Thau D, Seifert C, Engle E, Little B. A scalable satellite-based crop yield mapper. Remote Sens Environ. 2015;164:324–33. doi: 10.1016/j.rse.2015.04.021

4. Jin XL, Yang GJ, Xue XZ, Xu XG, Li ZH, Feng HK. Validation of two Huanjing-1A/B satellite-based FAO-56 models for estimating winter wheat crop evapotranspiration during mid-season. Agric Water Manage. 2017;189:27–38. doi: 10.1016/j.agwat.2017.04.017

5. Guo BB, Zhu YJ, Feng W, He L, Wu YP, Zhou Y, et al. Remotely Estimating Aerial N Uptake in Winter Wheat Using Red-Edge Area Index From Multi-Angular Hyperspectral Data Front Plant Sci. 2018;9:14.

6. Becker-Reshef I, Franch B, Barker B, Murphy E, Santamaria-Artigas A, Humber M, et al. Prior Season Crop Type Masks for Winter Wheat Yield Forecasting: A US Case Study. Remote Sens. 2018;10(10):20. doi: 10.3390/rs10101659

7. Hively WD, Duiker S, McCarty G, Prabhakara K. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania. J Soil Water Conserv. 2015;70(6):340–52. doi: 10.2489/jswc.70.6.340

8. Khan A, Hansen MC, Potapov PV, Adusei B, Pickens A, Krylov A, et al. Evaluating Landsat and RapidEye Data for Winter Wheat Mapping and Area Estimation in Punjab, Pakistan. Remote Sens. 2018;10(4):21. doi: 10.3390/rs10040489

9. Ming D, Wang Q, Yang J. Spatial Scale of Remote Sensing Image and Selection of Optimal Spatial Resolution. JOURNAL OF REMOTE SENSING. 2008;(04):529–37.

10. Estel S, Kuemmerle T, Alcantara C, Levers C, Prishchepov A, Hostert P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens Environ. 2015;163:312–25. doi: 10.1016/j.rse.2015.03.028

11. Li L, Friedl MA, Xin Q, Gray J, Pan Y, Frolking S. Mapping Crop Cycles in China Using MODIS-EVI Time Series. Remote Sens. 2014;6(3):2473. doi: 10.3390/rs6032473

12. Sun JL. Dynamic monitoring and yield estimation of crops by mainly using the remote sensing technique in China. Photogrammetric Engineering & Remote Sensing. 2000;66(5):págs. 645–50.

13. Jacquin A, Sheeren D, Lacombe JP, Woldai T, Annegarn H. Vegetation cover degradation assessment in Madagascar savanna based on trend analysis of MODIS NDVI time series. International Journal of Applied Earth Observations & Geoinformation. 2010;12(13):S3–S10.

14. Townshend JRG, Justice CO, Kalb V. Characterization and classification of South American land cover types using satellite data. Int J Remote Sens. 1987;8(8):1189–207. doi: 10.1080/01431168708954764

15. Wardlow BD, Egbert SL. Large-area crop mapping using time-series MODIS 250m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sensing of Environment. 2008;112(3):1096–116.

16. Li Z, Yang P, Zhou Q, Wang Y, Wu W, Zhang L, et al. Research on spatiotemporal pattern of crop phenological characteristics and cropping system in North China based on NDVI time series data. ACTA ECOLOGICA SINICA. 2009;29(11):6216–26.

17. Gao F, Anderson MC, Zhang XY, Yang ZW, Alfieri JG, Kustas WP, et al. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens Environ. 2017;188:9–25. doi: 10.1016/j.rse.2016.11.004

18. Zhou J, Jia L, Menenti M. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote Sens Environ. 2015;163:217–28. doi: 10.1016/j.rse.2015.03.018

19. Liang SZ, Ma WD, Sui XY, Yao HM, Li HZ, Liu T, et al. Extracting the Spatiotemporal Pattern of Cropping Systems From NDVI Time Series Using a Combination of the Spline and HANTS Algorithms: A Case Study for Shandong Province. Can J Remote Sens. 2017;43(1):1–15. doi: 10.1080/07038992.2017.1252906

20. Roerink GJ, Menenti M, Verhoef W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int J Remote Sens. 2000;21(9):1911–7. doi: 10.1080/014311600209814

21. Jönsson P, Eklundh L. TIMESAT—a program for analyzing time-series of satellite sensor data. Computers & Geosciences. 2004;30(8):833–45. https://doi.org/10.1016/j.cageo.2004.05.006.

22. Atzberger C, Rembold F. Mapping the Spatial Distribution of Winter Crops at Sub-Pixel Level Using AVHRR NDVI Time Series and Neural Nets. Remote Sens. 2013;5(3):1335–54. doi: 10.3390/rs5031335

23. Zaichun Z, Lianqun C, Jinshui Z, Yaozhong P, Wenquan Z, Tanshui H. Division of Winter Wheat Yield Estimation by Remote Sensing Based on MODIS EVI Time Series Data and Spectral Angle Clusering. Spectroscopy and Spectral Analysis. 2012;(07):1899–904.

24. Manfron G, Delmotte S, Busetto L, Hossard L, Ranghetti L, Brivio PA, et al. Estimating inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France. Int J Appl Earth Obs Geoinf. 2017;57:190–201. doi: 10.1016/j.jag.2017.01.001

25. Sui X, Zhu Z, Li S, Ming B, Zhang X, Sun X. Extracting winter wheat planting area based on cropping system with MODIS data. Transactions of the CSAE. 2010;26(S1):225–9.

26. Vermote EF, Saleous NZE, Justice CO. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ. 2002;83(1):97–111.

27. Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ. 2002;83(1):135–48.

28. Fensholt R, Proud SR. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ. 2012;119:131–47. doi: 10.1016/j.rse.2011.12.015

29. Didan K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid. V006 ed. NASA EOSDIS Land Processes DAAC2015.

30. Didan K. MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid. In: DAAC NELP, editor. 2015.

31. Roy DP, Borak JS, Devadiga S, Wolfe RE, Zheng M, Descloitres J. The MODIS Land product quality assessment approach. Remote Sens Environ. 2002;83(1):62–76. https://doi.org/10.1016/S0034-4257(02)00087-1.

32. Jia L, Shang H, Hu G, Menenti M. Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data. Hydrol Earth Syst Sci. 2011;15(3):1047–64. doi: 10.5194/hess-15-1047-2011

33. Menenti M, Azzali S, Verhoef W, Swol RV. Mapping agroecological zones and time lag in vegetation growth by means of fourier analysis of time series of NDVI images. Advances in Space Research. 1993;13(5):233–7.

34. Breiman L. Random Forests. Machine Learning. 2001;45(1):5–32.

35. Van der Linden S, Rabe A, Held M, Jakimow B, Leitão PJ, Okujeni A, et al. The EnMAP-Box—A Toolbox and Application Programming Interface for EnMAP Data Processing. Remote Sens. 2015;7(9):11249–66. doi: 10.3390/rs70911249

36. Statistics SPBo, team Nbosss. Shandong statistical yearbook. China statistics press2004~2016.

37. Dong X, Li S, Shi Z, Qiu C. Change characteristics of agricultural climate resources in recent 50 years in Shandong Province Chinese Journal of Applied Ecology. 2015;26(01):269–77.

38. Alcantara C, Kuemmerle T, Baumann M, Bragina EV, Griffiths P, Hostert P, et al. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Econstor Open Access Articles. 2013;8(3):1345–6.

39. Gu X, Han L, Wang J, Huang W, He X. Estimation of maize planting area based on wavelet fusion of multi-resolution images. Transactions of the CSAE. 2012;28(03):203–9.

40. Gislason PO, Benediktsson JA, Sveinsson JR. Random Forests for land cover classification. Pattern Recognition Letters. 2006;27(4):294–300.

41. Gu X, Pan Y, Zhu X, Zhang J, Han L, Wang S. Consistency Study between MODIS and TM on Winter Wheat Plant Area Monitoring-A Case in Small Area. JOURNALOFREMOTESENSING. 2007;(03):350–8.

42. Han L. Analysis on the change of cultivated land quantity and protection measures in Shandong Province [Master’s thesis]: Qufu Normal University; 2015.


Článek vyšel v časopise

PLOS One


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#