#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Aegicetus gehennae, a new late Eocene protocetid (Cetacea, Archaeoceti) from Wadi Al Hitan, Egypt, and the transition to tail-powered swimming in whales


Autoři: Philip D. Gingerich aff001;  Mohammed Sameh M. Antar aff002;  Iyad S. Zalmout aff001
Působiště autorů: Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, United States of America aff001;  Department of Geology and Paleontology, Nature Conservation Sector, Egyptian Environmental Affairs Agency, Cairo, Egypt aff002;  Department of Paleontology, Saudi Geological Survey, Jeddah, Saudi Arabia aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0225391

Souhrn

Aegicetus gehennae is a new African protocetid whale based on a partial skull with much of an associated postcranial skeleton. The type specimen, Egyptian Geological Museum, Cairo [CGM] 60584, was found near the base of the early-Priabonian-age (earliest late Eocene) Gehannam Formation of the Wadi Al Hitan World Heritage Site in Egypt. The cranium is distinctive in having ventrally-deflected exoccipitals. The vertebral column is complete from cervical C1 through caudal Ca9, with a vertebral formula of 7:15:4:4:9+, representing, respectively, the number of cervical, thoracic, lumbar, sacral, and caudal vertebrae. CGM 60584 has two more rib-bearing thoracic vertebrae than other known protocetids, and two fewer lumbars. Sacral centra are unfused, and there is no defined auricular surface on the ilium. Thus there was no weight-bearing sacroiliac joint. The sternum is distinctive in being exceptionally broad and flat. The body weight of CGM 60584, a putative male, is estimated to have been about 890 kg in life. Long bones of the fore and hind limbs are shorter than expected for a protocetid of this size. Bones of the manus are similar in length and more robust compared to those of the pes. A log vertebral length profile for CGM 60584 parallels that of middle Eocene Maiacetus inuus through the anterior and middle thorax, but more posterior vertebrae are proportionally longer. Vertebral elongation, loss of a sacroiliac articulation, and hind limb reduction indicate that Aegicetus gehennae was more fully aquatic and less specialized as a foot-powered swimmer than earlier protocetids. It is doubtful that A. gehennae had a tail fluke, and the caudal flattening known for basilosaurids is shorter relative to vertebral column length than flattening associated with a fluke in any modern whale. Late protocetids and basilosaurids had relatively long skeletons, longer than those known earlier and later, and the middle-to-late Eocene transition from foot-powered to tail-powered swimming seemingly involved some form of mid-body-and-tail undulation.

Klíčová slova:

Body limbs – Eocene epoch – Ribs – Spine – Swimming – Tails – Vertebrae


Zdroje

1. Gingerich PD, Raza SM, Arif M, Anwar M, Zhou X. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature. 1994;368: 844–847. doi: 10.1038/368844a0

2. Hulbert RC, Petkewich RM, Bishop GA, Bukry D, Aleshire DP. A new middle Eocene protocetid whale (Mammalia: Cetacea: Archaeoceti) and associated biota from Georgia. J Paleontol. 1998;72: 907–927. doi: 10.1017/S0022336000027232

3. Gingerich PD, Haq Mu, Khan IH, Zalmout IS. Eocene stratigraphy and archaeocete whales (Mammalia, Cetacea) of Drug Lahar in the eastern Sulaiman Range, Balochistan (Pakistan). Contributions from the Museum of Paleontology, University of Michigan. 2001;30: 269–319.

4. Gingerich PD, Haq Mu, Zalmout IS, Khan IH, Malkani MS. Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science. 2001;293: 2239–2242. doi: 10.1126/science.1063902 11567134

5. Gingerich PD, Haq Mu, Koenigswald Wv, Sanders WJ, Smith BH, Zalmout IS. New protocetid whale from the middle Eocene of Pakistan: birth on land, precocial development, and sexual dimorphism. PLoS One. 2009;4 (e4366): 1–20. doi: 10.1371/journal.pone.0004366 19194487

6. Uhen MD. New material of Natchitochia jonesi and a comparison of the innominata and locomotor capabilities of Protocetidae. Marine Mammal Science. 2014;30: 1029–1066. doi: 10.1111/mms.12100

7. Lambert O, Bianucci G, Salas-Gismondi R, Di Celma C, Steurbaut E, Urbina M, et al. An amphibious whale from the middle Eocene of Peru reveals early South Pacific dispersal of quadrupedal cetaceans. Curr Biol. 2019;29: 1352–1359. doi: 10.1016/j.cub.2019.02.050 30955933

8. Uhen MD. Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): an archaeocete from the middle to late Eocene of Egypt. University of Michigan Papers on Paleontology. 2004;34: 1–222.

9. Gingerich PD, Smith BH, Simons EL. Hind limbs of Eocene Basilosaurus isis: evidence of feet in whales. Science. 1990;249: 154–157. doi: 10.1126/science.249.4965.154 17836967

10. Voss M, Antar MSM, Zalmout IS, Gingerich PD. Stomach contents of the archaeocete Basilosaurus: apex predator in oceans of the late Eocene. PLoS One. 2019;14: e0209021. doi: 10.1371/journal.pone.0209021 30625131

11. Zalmout IS, Gingerich PD. Late Eocene sea cows (Mammalia, Sirenia) from Wadi Al Hitan in the Western Desert of Fayum, Egypt. University of Michigan Papers on Paleontology. 2012;37: 1–158.

12. Iskander F. Geological survey of the Gharaq el Sultani sheet no. 68/54. Standard Oil Company, Egypt S. A., Reports. 1943;57: 1–29.

13. Beadnell HJL. The topography and geology of the Fayum Province of Egypt. Cairo: Survey Department of Egypt; 1905.

14. Said R. The Geology of Egypt. Amsterdam: Elsevier; 1962.

15. Bu Haq, Hardenbol JA Vail PR. Chronology of fluctuating sea levels since the Triassic. Science. 1987;235: 1156–1167. doi: 10.1126/science.235.4793.1156 17818978

16. Hardenbol JA, Thierry J, Farley MB, Jacquin T, Graciansky P-Cd, Vail PR. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: Graciansky P-Cd, Hardenbol JA, Jacquin T, Vail PR, editors. Mesozoic and Cenozoic sequence stratigraphy of European basins: SEPM Society for Sedimentary Geology, Special Publication 60; 1998: p. 3–13 (eight charts).

17. Gingerich PD, Zalmout IS, Antar MSM, Williams EM, Carlson AE, Kelly DC, et al. Large-scale glaciation and deglaciation of Antarctica during the late Eocene: reply. Geology. 2012;40: e255. doi: 10.1130/G33046Y.1

18. Strougo A, Faris M, Haggag MAY, Abul-Nasr RA, Gingerich PD. Planktonic foraminifera and calcareous nannofossil biostratigraphy through the middle-to-late Eocene transition at Wadi Hitan, Fayum Province, Egypt. Contributions from the Museum of Paleontology, University of Michigan. 2013;32: 111–138.

19. Agnini C, Fornaciari E, Giusberti L, Grandesso P, Lanci L, Luciani V, et al. Integrated biomagnetostratigraphy of the Alano section (NE Italy): a proposal for defining the middle-late Eocene boundary. Geol Soc Am Bull. 2011;123: 841–872. doi: 10.1130/B30158.1

20. Linnaeus C. Systema Naturae, tenth edition. Holmiae (Stockholm): Laurentii Salvii; 1758.

21. Brisson M-J. Regnum Animale in Classes IX. Distributum, sive Synopsis Methodica. Leiden: Lugduni Batavorum, Theodorum Haak; 1762.

22. Flower WH. On the arrangement of the orders and families of existing Mammalia. Proceedings of the Zoological Society of London. 1883;1883: 178–186.

23. Stromer von Reichenbach E. Die Archaeoceti des ägyptischen Eozäns. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, Vienna. 1908;21: 106–178.

24. Gingerich PD, Zalmout IS, Haq M, Bhatti MA. Makaracetus bidens, a new protocetid archaeocete (Mammalia, Cetacea) from the early middle Eocene of Balochistan (Pakistan). Contributions from the Museum of Paleontology, University of Michigan. 2005;31: 197–210.

25. McLeod SA and Barnes LG. A new genus and species of Eocene protocetid archaeocete whale (Mammalia, Cetacea) from the Atlantic Coastal Plain. In Wang X and Barnes LG, editors. Geology and vertebrate paleontology of western and southern North America: contributions in honor of David P. Whistler. Natural History Museum of Los Angeles County Science Series. 2008;41: 73–98.

26. Andrews CW. A description of new species of zeuglodont and of leathery turtle from the Eocene of southern Nigeria. Proceedings of the Zoological Society of London. 1920;89: 309–319. doi: 10.1111/j.1096-3642.1919.tb02124.x

27. Halstead LB, Middleton JA. New material of the archaeocete whale, Pappocetus lugardi Andrews, from the middle Eocene of Nigeria. Journal of Mining and Geology. 1974;8: 81–85.

28. Halstead LB, Middleton JA. Fossil vertebrates of Nigeria. Part II, 3.4, Archaeocete whale: Pappocetus lugardi Andrews, 1920. The Nigerian Field. 1976;41: 131–133.

29. Gingerich PD, Zouhri S. New fauna of archaeocete whales (Mammalia, Cetacea) from the Bartonian middle Eocene of southern Morocco. J Afr Earth Sci. 2015;111: 273–286. doi: 10.1016/j.jafrearsci.2015.08.006

30. Trivedy AN, Satsangi PP. A new archaeocete (whale) from the Eocene of India. Abstracts of 27th International Geological Congress, Moscow. 1984;1: 322–323.

31. Gingerich PD, Arif M, Bhatti MA, Raza HA, Raza SM. Protosiren and Babiacetus (Mammalia, Sirenia and Cetacea) from the middle Eocene Drazinda Formation, Sulaiman Range, Punjab (Pakistan). Contributions from the Museum of Paleontology, University of Michigan. 1995;29: 331–357.

32. Hulbert RC. Postcranial osteology of the North American middle Eocene protocetid Georgiacetus. In: Thewissen JGM, editor. The emergence of whales: evolutionary patterns in the origin of Cetacea. New York: Plenum Press; 1998. pp. 235–267.

33. Uhen MD. New protocetid (Mammalia, Cetacea) from the late middle Eocene Cook Mountain Formation of Louisiana. J Vertebr Paleontol. 1998;18: 664–668.

34. Geisler JH, Sanders AE, Luo Z. A new protocetid whale (Cetacea: Archaeoceti) from the late middle Eocene of South Carolina. American Museum Novitates. 2005;3480: 1–65.

35. Bianucci G, Gingerich PD. Aegyptocetus tarfa n. gen. et sp. (Mammalia, Cetacea) from the middle Eocene of Egypt: clinorhynchy, olfaction, and hearing in a protocetid whale. J Vertebr Paleontol. 2011;31: 1173–1188. doi: 10.1080/02724634.2011.607985

36. Bromley RG, Martinell J. Centrichnus, new ichnogenus for centncally pattemed attachment scars on skeletal substrates. Bulletin of the Geological Society of Denmark. 1991;38: 243–252.

37. Santos A, Mayoral EJ, Guinea FM. Bioerosion scars of acorn barnacles from the south-western Iberian Peninsula, upper Neogene. Rivista Italiana di Paleontologia e Stratigrafia. 2005;111: 181–189. doi: 10.13130/2039-4942/6289

38. Montie EW, Manire CA, Mann DA. Live CT imaging of sound reception anatomy and hearing measurements in the pygmy killer whale, Feresa attenuata. J Exp Biol. 2011;214: 945–955. doi: 10.1242/jeb.051599 21346122

39. Luo Z, Gingerich PD. Terrestrial Mesonychia to aquatic Cetacea: transformation of the basicranium and evolution of hearing in whales. University of Michigan Papers on Paleontology. 1999;31: 1–98.

40. Mourlam MJ, Orliac MJ. Protocetid (Cetacea, Artiodactyla) bullae and petrosals from the middle Eocene locality of Kpogamé, Togo: new insights into the early history of cetacean hearing. J Syst Palaeontol. 2017;1–24. doi: 10.1080/14772019.2017.1328378

41. Reidenberg JS, Laitman JT. Anatomy of the hyoid apparatus in Odontoceti (toothed whales): specializations of their skeleton and musculature compared with those of terrestrial mammals. Anat Rec. 1994;240: 598–624. doi: 10.1002/ar.1092400417 7879911

42. Flower WH, Gadow H. An Introduction to the Osteology of the Mammalia, Third Edition. London: MacMillan. 1885.

43. Gingerich PD. Body weight and relative brain size (encephalization) in Eocene Archaeoceti (Cetacea). J Mamm Evol. 2015;23: 17–31. doi: 10.1007/s10914-015-9304-y

44. Fraas E. Neue Zeuglodonten aus dem unteren Mitteleocän vom Mokattam bei Cairo. Geologische und Paläontologische Abhandlungen, Neue Folge, Jena. 1904;6: 197–220.

45. Sahni A, Mishra VP. Lower Tertiary vertebrates from western India. Palaeontological Society of India, Monographs. 1975;3: 1–48.

46. Gingerich PD, Arif M, Clyde WC. New archaeocetes (Mammalia, Cetacea) from the middle Eocene Domanda Formation of the Sulaiman Range, Punjab (Pakistan). Contributions from the Museum of Paleontology, University of Michigan. 1995; 29: 291–330.

47. Bajpai S, Thewissen JGM. Protocetid cetaceans (Mammalia) from the Eocene of India. Palaeontol Electronica. 2014;17: 1–19.

48. Gibson ML, Mnieckowski J, Geisler JH. Tupelocetus palmeri, a new species of protocetid whale (Mammalia, Cetacea) from the middle Eocene of South Carolina. J Vertebr Paleontol. 2019;e1555165. doi: 10.1080/02724634.2018.1555165

49. Kellogg R. A review of the Archaeoceti. Carnegie Institution of Washington, Publications. 1936;482: 1–366.

50. Gingerich PD. Land-to-sea transition of early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology. 2003;29: 429–454. doi: 10.1666/0094-8373(2003)029<0429:ltiewe>2.0.CO;2

51. Fish FE. Secondary evolution of aquatic propulsion in higher vertebrates: validation and prospect. Integr Comp Biol. 2016;56: 1285–1297. doi: 10.1093/icb/icw123 27697779

52. Buchholtz EA. Implications of vertebral morphology for locomotor evolution in early Cetacea. In: Thewissen JGM, editor. The emergence of whales: evolutionary patterns in the origin of Cetacea. New York: Plenum Press; 199pp. 325–351.

53. Buchholtz EA, Schur SA. Vertebral osteology in Delphinidae (Cetacea). Zool J Linn Soc. 2004;140: 383–401. doi: 10.1111/j.1096-3642.2003.00105.x

54. Webb PW, Buffrénil V. Locomotion in the biology of large aquatic vertebrates. Trans Am Fish Soc. 1990;119: 629–641. doi: 10.1577/1548-8659(1990)119<0629:LITBOL>2.3.CO;2

55. Bebej RM, Smith KM. Lumbar mobility in archaeocetes (Mammalia: Cetacea) and the evolution of aquatic locomotion in the earliest whales. Zool J Linn Soc. 2017;182: 695–721. doi: 10.1093/zoolinnean/zlx058

56. Motani R, You H, McGowan C. Eel-like swimming in the earliest ichthyosaurs. Nature. 1996;382: 347–348. doi: 10.1038/382347a0

57. Lindgren J, Polcyn MJ, Young BA. Landlubbers to leviathans: evolution of swimming in mosasaurine mosasaurs. Paleobiology. 2011;37: 445–469. doi: 10.1666/09023.1

58. Seebacher F, Elsworth PG, Franklin CE. Ontogenetic changes of swimming kinematics in a semi-aquatic reptile (Crocodylus porosus). Aust J Zool. 2003;51: 15–24. doi: 10.1071/ZO02036

59. Buchholtz EA. Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). J Zool. 2001;253: 175–190. doi: 10.1017/S0952836901000164

60. Pabst DA. To bend a dolphin: convergence of force transmission designs in cetaceans and scombrid fishes. Am Zool. 2000;40: 146–155. doi: 10.1093/icb/40.1.146


Článek vyšel v časopise

PLOS One


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#