Face recognition and memory in congenital amusia
Autoři:
Weidong Tao aff001; Huayan Huang aff002; Hanna Haponenko aff003; Hong-jin Sun aff003
Působiště autorů:
Department of Psychology, School of Teacher Education, Huzhou Normal University, Huzhou, Zhejiang, China
aff001; Department of Psychology, School of Education, Lingnan Normal University, Zhanjiang, Guangdong, China
aff002; Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamiliton, Ontario, Canada
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225519
Souhrn
Congenital amusia, commonly known as tone deafness, is a lifelong impairment of music perception and production. It remains a question of debate whether the impairments in musical domain observed in congenital amusia are paralleled in other non-musical perceptual abilities. Using behavioral measures in two experiments, the current study explored face perception and memory in congenital amusics. Both congenital amusics and matched controls performed a face perception task (Experiment 1) and an old/novel object memory task (for both faces and houses, Experiment 2). The results showed that the congenital amusic group had significantly slower reaction times than that in matched control group when identifying whether two faces presented together were the same or different. For different face-pairs, the deficit was greater for upright faces compared with inverted faces. For object memory task, the congenital amusic group also showed worse memory performance than the control group. The results of the present study suggest that the impairment attributed to congenital amusia is not only limited to music, but also extends to visual perception and visual memory domain.
Klíčová slova:
Bioacoustics – Cognition – Cognitive impairment – Face recognition – Memory – Music cognition – Music perception – Vision
Zdroje
1. Peretz I. The Biological Foundations of Music.; 2013. pp. 551–564.
2. Royal I, Paquette S, Tranchant P. Musical Disorders.; 2019.
3. Kalmus H, Fry DB. On tune deafness (dysmelodia): frequency, development, genetics and musical background. Ann Hum Genet. 1980; 43: 369–382. doi: 10.1111/j.1469-1809.1980.tb01571.x 7396411
4. Nan Y, Sun YN, Peretz I. Congenital amusia in speakers of a tone language: association with lexical tone agnosia. Brain. 2010; 133: 2635–2642. doi: 10.1093/brain/awq178 20685803
5. Peretz I, Vuvan DT. Prevalence of congenital amusia. Eur J Hum Genet. 2017; 25: 625–630. doi: 10.1038/ejhg.2017.15 28224991
6. Ayotte J, Peretz I, Hyde K. Congenital amusia—A group study of adults afflicted with a music-specific disorder. Brain. 2002; 125: 238–251. doi: 10.1093/brain/awf028 11844725
7. Peretz I, Ayotte J, Zatorre RJ, Mehler J, Ahad P, Penhune VB et al. Congenital amusia: A disorder of fine-grained pitch discrimination. Neuron. 2002; 33: 185–191. doi: 10.1016/s0896-6273(01)00580-3 11804567
8. Peretz I, Hyde KL. What is specific to music processing? Insights from congenital amusia. Trends Cogn Sci. 2003; 7: 362–367. doi: 10.1016/s1364-6613(03)00150-5 12907232
9. Thompson WF, Marin MM, Stewart L. Reduced sensitivity to emotional prosody in congenital amusia rekindles the musical protolanguage hypothesis. P Natl Acad Sci A. 2012; 109: 19027–19032.
10. Gosselin N, Paquette S, Peretz I. Sensitivity to musical emotions in congenital amusia. Cortex 2015; 71: 171–182. doi: 10.1016/j.cortex.2015.06.022 26226563
11. Stewart L. Fractionating the musical mind: insights from congenital amusia. Curr Opin Neurobiol. 2008; 18: 127–130. doi: 10.1016/j.conb.2008.07.008 18694826
12. Foxton JM, Dean JL, Gee R, Peretz I, Griffiths TD. Characterization of deficits in pitch perception underlying ‘tone deafness’. Brain. 2004; 127: 801–810. doi: 10.1093/brain/awh105 14985262
13. Hyde KL, Peretz I. Brains that are out of tune but in time. Psychol Sci 2004; 15: 356–360. doi: 10.1111/j.0956-7976.2004.00683.x 15102148
14. Stewart L, Walsh V. Congenital amusia: All the songs sound the same. Curr Biol. 2002; 12: 420–421.
15. Marin MM, Gingras B, Stewart L. Perception of musical timbre in congenital amusia: Categorization, discrimination and short-term memory. Neuropsychologia. 2012; 50: 367–378. doi: 10.1016/j.neuropsychologia.2011.12.006 22201556
16. Tillmann B, Schulze K, Foxton JM. Congenital amusia: A short-term memory deficit for non-verbal, but not verbal sounds. Brain Cognition. 2009; 71: 259–264. doi: 10.1016/j.bandc.2009.08.003 19762140
17. Patel AD, Wong M, Foxton J, Lochy A, Peretz I. Speech intonation perception deficits in musical tone deafness (congenital amusia). Music Percept. 2008; 25: 357–368.
18. Nguyen S, Tillmann B, Gosselin N, Peretz I. Tonal Language Processing in Congenital Amusia.Ann N Y Acad Sci. 2009; 1169: 490–493. doi: 10.1111/j.1749-6632.2009.04855.x 19673828
19. Liu F, Patel AD, Fourcin A, Stewart L. Intonation processing in congenital amusia: discrimination, identification and imitation. Brian. 2010; 133: 1682–1693.
20. Jiang CM, Hammn J, Lim V, Kirk I, Yang YF. Processing melodic contour and speech intonation in congenital amusics with Mandarin Chinese. Neuropsychologia. 2010; 48: 2630–2639. doi: 10.1016/j.neuropsychologia.2010.05.009 20471406
21. Jiang C, Hamm JP, Lim VK, Kirk IJ, Chen X, Yang Y. Amusia results in abnormal brain activity following inappropriate intonation during speech comprehension. Plos One. 2012; 7: e41411. doi: 10.1371/journal.pone.0041411 22859982
22. Perrachione TK, Fedorenko EG, Vinke L, Gibson E, Dilley LC. Evidence for Shared Cognitive Processing of Pitch in Music and Language. Plos One. 2013; 8.
23. Fiveash A, Pammer K. Music and language: Do they draw on similar syntactic working memory resources? Psychol Music. 2014; 42: 190–209.
24. Douglas KM, Bilkey DK. Amusia is associated with deficits in spatial processing. Nat Neurosci 2007; 10: 915–921. doi: 10.1038/nn1925 17589505
25. Tao W, Huang H, Li H, Lu Y, Tao X. Spatial representation of pitch in congenital amusia (In Chinese). Psychol Sci. 2015; 3: 733–738.
26. Lu XJ, Sun YN, Ho HT, Thompson WF. Pitch contour impairment in congenital amusia: New insights from the Self-paced Audio-visual Contour Task (SACT). Plos One. 2017; 12.
27. Sun YA, Lu XJ, Ho HT, Thompson WF. Pitch discrimination associated with phonological awareness: Evidence from congenital amusia. Sci Rep. 2017; 7.
28. Tillmann B, Jolicoeur P, Ishihara M, Gosselin N, Bertrand O, Rossetti Yet al. The Amusic Brain: Lost in Music, but Not in Space. Plos One. 2010; 5.
29. Williamson VJ, Cocchini G, Stewart L. The relationship between pitch and space in congenital amusia. Brain Cognition. 2011; 76: 70–76. doi: 10.1016/j.bandc.2011.02.016 21440971
30. Paquette S, Li HC, Corrow SL, Buss SS, Barton J, Schlaug G. Developmental Perceptual Impairments: Cases When Tone-Deafness and Prosopagnosia Co-occur. Front Hum Neuroscience. 2018; 12.
31. Corrow SL, Stubbs JL, Schlaug G, Buss S, Paquette S, Duchaine B et al. Perception of musical pitch in developmental prosopagnosia. Neuropsychologia 2019; 124: 87–97. doi: 10.1016/j.neuropsychologia.2018.12.022 30625291
32. Couvignou M, Peretz I, Ramus F. Comorbidity and cognitive overlap between developmental dyslexia and congenital amusia. Cogn Neuropsychol 2019; 36: 1–17. doi: 10.1080/02643294.2019.1578205 30785364
33. Trehub SE. Musical predispositions in infancy. Ann Ny Acad Sci. 2001: 1–16.
34. Kim J, Levitin DJ. Configural processing in melody recognition. Canadian Acoustics 2002; 3: 156–157.
35. EO A. How many music centers are in the brain?. Ann N Y Acad Sci 2001; 930: 273–280. doi: 10.1111/j.1749-6632.2001.tb05738.x 11458834
36. Tanaka JW, Farah MJ. Parts and wholes in face recognition. The Quarterly Journal of Experimental Psychology, 46(2), 225–245. doi: 10.1080/14640749308401045 8316637
37. Ellis AW, Burton AM, Young A, Flude BM. Repetition priming between parts and wholes: Tests of a computational model of familiar face recognition. Brit J Psychol. 1997; 88: 579–608.
38. Farah MJ, Wilson KD, Drain M, Tanaka JN. What is "special" about face perception? Psychol Rev 1998; 105: 482–498. doi: 10.1037/0033-295x.105.3.482 9697428
39. Goffaux V, Rossion B. Faces are "spatial"—Holistic face perception is supported by low spatial frequencies. J Exp Psychol Human. 2006; 32: 1023–1039.
40. McKone E, Kanwisher N, Duchaine BC. Can generic expertise explain special processing for faces? Trends Cogn Sci. 2007; 11: 8–15. doi: 10.1016/j.tics.2006.11.002 17129746
41. Freiwald WA, Tsao DY, Livingstone MS. A face feature space in the macaque temporal lobe. Nat Neurosci. 2009; 12: 1187–1196. doi: 10.1038/nn.2363 19668199
42. Hyde KL, Zatorre RJ, Peretz I. Functional MRI Evidence of an Abnormal Neural Network for Pitch Processing in Congenital Amusia. Cereb Cortex. 2011; 21: 292–299. doi: 10.1093/cercor/bhq094 20494966
43. Stewart L. Characterizing congenital amusia. Q J Exp Psychol 2011; 64: 625–638.
44. Avidan G, Behrmann M. Functional MRI reveals compromised neural integrity of the face processing network in congenital prosopagnosia. Curr Biol. 2009; 19: 1146–1150. doi: 10.1016/j.cub.2009.04.060 19481456
45. Peretz I. Neurobiology of Congenital Amusia. Trends Cogn Sci. 2016; 20: 857–867. doi: 10.1016/j.tics.2016.09.002 27692992
46. Tillmann B, Leveque Y, Fornoni L, Albouy P, Caclin A. Impaired short-term memory for pitch in congenital amusia. Brain Res. 2016; 1640: 251–263. doi: 10.1016/j.brainres.2015.10.035 26505915
47. Caclin A, Tillmann B. Musical and verbal short-term memory: insights from neurodevelopmental and neurological disorders.Ann NY Acad Sci. 2018; 1423: 155–165.
48. Gosselin N, Jolicoeur P, Peretz I. Impaired Memory for Pitch in Congenital Amusia.; 2009. pp. 270–272. doi: 10.1111/j.1749-6632.2009.04762.x 19673791
49. Peretz I, Champod AS, Hyde K. Varieties of musical disorders—The Montreal battery of evaluation of amusia.; 2003. pp. 58–75. doi: 10.1196/annals.1284.006 14681118
50. Bai L, Ma H, Huang YX, Luo YJ. The development of native Chinese affective picture system-A pretest in 46 college students(in Chinese). Chinese mental health journal 2005; 19: 719–722.
51. Yin RK. Looking at upside-down faces. Journal of experimental Psychology 1969: 141–145.
52. Bartlett JC, Searcy J. Inversion and configuration of faces. Cogn Psychol 1993; 25: 281–316. doi: 10.1006/cogp.1993.1007 8354050
53. Van Belle G, De Smet M, De Graef P, Van Gool L, Verfaillie K. Configural and featural processing during face perception: A new stimulus set. Behav Res Methods. 2009; 41: 279–283. doi: 10.3758/BRM.41.2.279 19363168
54. Gauthier I, Skudlarski P, Gore JC, Anderson AW. Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci. 2000; 3: 191–197. doi: 10.1038/72140 10649576
55. Maurer D, Le Grand R, Mondloch CJ. The many faces of configural processing. Trends Cogn Sci. 2002; 6: 255–260 doi: 10.1016/s1364-6613(02)01903-4 12039607
56. Bedard C, Belin P. A "voice inversion effect?". Brain Cognition. 2004; 55: 247–249. doi: 10.1016/j.bandc.2004.02.008 15177788
57. Leveque Y, Fauvel B, Groussard M, Caclin A, Albouy P, Platel H et al. Altered intrinsic connectivity of the auditory cortex in congenital amusia. J Neurophysiol 2016; 116: 88–97. doi: 10.1152/jn.00663.2015 27009161
58. Peretz I, Zatorre RJ. Brain organization for music processing. Annu Rev Psychol. 2005; 56: 89–114. doi: 10.1146/annurev.psych.56.091103.070225 15709930
59. Satoh M, Takeda K, Murakami Y, Onouchi K, Inoue K, Kuzuhara S. A case of amusia caused by the infarction of anterior portion of bilateral temporal lobes. Cortex. 2005; 41: 77–83. doi: 10.1016/s0010-9452(08)70180-1 15633709
60. Nan Y, Friederici AD. Differential roles of right temporal cortex and broca's area in pitch processing: Evidence from music and mandarin. Hum Brain Mapp. 2013; 34: 2045–2054. doi: 10.1002/hbm.22046 22431306
61. Sergent J, Ohta S, Macdonald B.Functional neuroanatomy of face and object processing a positron emission tomography study. Brain.1992; 115: 15–36. doi: 10.1093/brain/115.1.15 1559150
62. Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR. A neural basis for lexical retrieval. Nature. 1996; 380: 499–505. doi: 10.1038/380499a0 8606767
63. Moore CJ, Price CJ. A functional neuroimaging study of the variables that generate category-specific object processing differences. Brain. 1999; 122: 943–962. doi: 10.1093/brain/122.5.943 10355678
64. Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci U S A. 1995; 92: 8135–8139. doi: 10.1073/pnas.92.18.8135 7667258
65. DEsposito M, Zarahn E, Aguirre GK, Shin RK, Auerbach P, Detre JA. The effect of pacing of experimental stimuli on observed functional MRI activity. Neuroimage. 1997; 6: 113–121. doi: 10.1006/nimg.1997.0281 9299385
66. Curran CP, Williams MT, Vorhees CV, Patel KV, Nebert DW. Genetic susceptibility to PCB-induced developmental neurotoxicity. Birth Defects Res A. 2008; 82: 290.
67. Williamson VJ, Stewart L. Memory for pitch in congenital amusia: Beyond a fine-grained pitch discrimination problem. Memory. 2010; 18: 657–669. doi: 10.1080/09658211.2010.501339 20706954
68. Tillmann B, Burnham D, Nguyen S, Grimault N, Gosselin N, Peretz I. Congenital Amusia (or Tone-Deafness) Interferes with Pitch Processing in Tone Languages. Front Psychol. 2011; 2: 120. doi: 10.3389/fpsyg.2011.00120 21734894
69. Berman IW. Musical functioning, speech lateralization and the amusias. S Afr Med J.1981; 59: 78–81. 7008213
70. Goldstein AG, Stephenson B, Chance J. Face recognition memory: Distribution of false alarms. Bulletin of the psychonomic Society. 1977; 9: 416–418.
71. Mas-Herrero E, Zatorre R, Rodriguez-Fornells A, Marco-Pallarés J. Dissociation between Musical and Monetary Reward Responses in Specific Musical Anhedonia. Current biology: CB 2014; 24.
72. Dalla Bella S, Giguère JF, And Peretz I. Singing proficiency in the general population. Journal Acoustic society of America 2007: 1182–1189.
73. Pfordresher PQ, Brown S. Poor-pitch singing in the absence of "tone deafness". Musci Percept. 2007; 25: 95–115.
74. Sarkamo T, Tervaniemi M, Soinila S, Autti T, Silvennoinen HM, Laine M et al. Amusia and Cognitive Deficits after Stroke Is There a Relationship?Ann N Y Acad Sci.2009;1169: 441–445. doi: 10.1111/j.1749-6632.2009.04765.x 19673821
75. Wen Y, Nie X, Wu D, Liu H, Zhang P, Lu X. Amusia and cognitive deficits in schizophrenia: Is there a relationship? Schizophr Res. 2014; 157: 60–62. doi: 10.1016/j.schres.2014.05.029 24957355
76. Hatada S, Sawada K, Akamatsu M, Doi E, Minese M, Yamashita Met al. Impaired musical ability in people with schizophrenia. J Psychiatr Neurosci. 2014; 39: 118–126.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy