The effect of extra-osseous talotarsal stabilization (EOTTS) to reduce medial knee compartment forces – An in vivo study
Autoři:
Lukas Kolodziej aff001; Rodney K. Summers aff002; Michael E. Graham aff003
Působiště autorů:
Clinic of Orthopaedics Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Szczecin, Poland
aff001; Engineering Center for Orthopaedic Research Excellence (ECORE), Departments of Bioengineering and Orthopaedic Surgery, Colleges of Engineering and Medicine, The University of Toledo, Toledo, OH, United States of America
aff002; Department of Foot and Ankle Surgery, Graham International Implant Institute, Macomb, MI, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224694
Souhrn
Background
Excessive hindfoot pronation, talotarsal joint (TTJ) instability, has been attributed to an increase in medial knee compartment pathology. Advocacy for hindfoot realignment has been the subject of research. An internal solution for TTJ instability, extra-osseous talotarsal stabilization (EOTTS), exists but its effect on knee forces is unknown. This is the first study to measure the in vivo forces acting within the medial knee compartment before and after EOTTS. We hypothesized that following EOTTS there should be a reduction of force acting on the medial knee compartment.
Methods
10 fresh frozen cadaver lower extremities exhibiting clinical and radiographic evidence of TTJ instability were evaluated. The proximal femur segment was mounted to a mechanical testing unit. Pressure sensors were placed within the medial knee compartment. A force of 1000 newtons was then applied, and the femur was internally rotated 10 degrees. Measurements were recorded before and after the insertion of a type II EOTTS stent.
Results
Pre-EOTTS resulted in an average of 842 ± 247N acting within the medial knee joint compartment. These forces then decreased to an average of 565 ± 260N (<0.05) following EOTTS, representing an average reduction of force by 32.8%.
Conclusion
EOTTS has been shown to decrease the in vivo forces action within the medial knee compartment. This helps to further illustrate the importance of realigning and stabilizing the hindfoot for the prevention and treatment of chronic knee pain.
Klíčová slova:
Body limbs – Feet – Knee joints – Knees – MTS assay – Osteoarthritis – Skeletal joints – Surgical and invasive medical procedures
Zdroje
1. Halaweh H, Willen C, Drimby_Ekman A, Svantesson U. Physical Activity and Health-Related Quality of Life Among Community Dwelling Elderly. J Clin Med Res. 2015;7(11):845–52. doi: 10.14740/jocmr2307w 26491496
2. Guccione AA, Felson DT, Anderson JJ, et al. The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. A J Public Health 1994;84:351–8.
3. Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008;58:26–35. doi: 10.1002/art.23176 18163497
4. Murphy L, Schwartz TA, Helmick CG, Renner JB, Tudor G, et. al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum 2008;59(9):1207–13. doi: 10.1002/art.24021 18759314
5. Andriacchi TP, Mundermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 2004;32:447–57. doi: 10.1023/b:abme.0000017541.82498.37 15095819
6. Felson DT. Osteoarthritis as a disease of mechanics. Osteoarthritis Cartilage. 2012;21:10–5. doi: 10.1016/j.joca.2012.09.012 23041436
7. Chehab EF, Favre J, Erhart-Hledik JC, et al. Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis. Osteoarthritis Cartilage 2014;22:1833–9. doi: 10.1016/j.joca.2014.08.009 25211281
8. Cho YM, Ko YJ, Lee W. Relationships among foot position, lower limb alignment, and knee adduction moment in patients with degenerative knee osteoarthritis. J Phys Ther Sci 2015;27:265–8. doi: 10.1589/jpts.27.265 25642088
9. Ohi H, Lijima H, Aoyama T, Kaneda E, Ohi K, Abe K. Association of frontal plane knee alignment with foot posture in patients with medial knee osteoarthritis. BMC Musculoskeletal Disorders 2017;18:246. doi: 10.1186/s12891-017-1588-z 28592232
10. Graham ME, Jawrani NT, Chikka A. Extra-Osseous TaloTarsal Stabilization using HyProCure® in Adults: A 5-Year Retrospective Follow-Up. J Foot Ankle Surg 2012;51(1): 23–29. doi: 10.1053/j.jfas.2011.10.011 22196455
11. Okamoto Y, Otsuki S, Jotoky T, Nakajima M, Neo M. Clinical usefulness of hindfoot assessment for total knee arthroplasty: persistent post-operative hindfoot pain and alignment in pre-existing severe knee deformity. Knee Surg Sports Traumatol Arthrosc. 2017 Aug;25(8):2632–2639. doi: 10.1007/s00167-016-4122-1 27056693
12. Nakada I, Nakamura I, Juji T, Ito K, Matsumoto T. Correlation between knee and hindfoot alignment in patients with rheumatoid arthritis: The effects of subtalar joint destruction. Mod Rheumatol. 2015 25(5):689–93. doi: 10.3109/14397595.2015.1008726 25608046
13. Norton AA, Callagan JJ, Amendola A, Phisitkul P, Wongsak S, Liu SS, Fruehling-Wall C. Correlation of knee and hindfoot deformities in advanced knee OA: compensatory hindfoot alignment and where it occurs. Clin Orthop Relat res. 2015 473(1):166–74. doi: 10.1007/s11999-014-3801-9 25024033
14. Piazza SJ. Mechanics of the subtalar joint and its function during walking. Foot Ankle Clin 2005;10(3):425–42. doi: 10.1016/j.fcl.2005.04.001 16081013
15. Rodriques P, Chang R, TenBroek T, van Emmerik R, Hamill J. Evaluating the coupling between foot pronation and tibial internal rotation continuously using vector coding. J Appl Biomech 31(2):88–94, 2015. doi: 10.1123/jab.2014-0067 25386828
16. Hintermann B, Nigg BM, Pronation in runners. Implications for injuries. Sports Med 1998;26(3):169–76. doi: 10.2165/00007256-199826030-00003 9802173
17. Kenawey M, Liodakis E, Ostermeier S, Horn T, Hankemeir S. Effect of the lower limb rotational alignment on tibiofemoral contact pressure. Knee Surg Sports Traumatol Arthorosc 2011;19(11):1851–9.
18. Schipplein J. Andriacchi TP. Interaction between active and passive knee stabilizers during level walking. Ortho Res 1991;9(1):113–9.
19. Chang a, Hochberg M, Song J, Dunlop D, et. al. Frequency of Varus and Valgus Thrust and Factors Associated with Thrust Presence in Persons with or at Higher Risk for Knee Osteoarthritis. Arthritis Rheum 2010;62(5):1403–11. doi: 10.1002/art.27377 20213800
20. Ahlback S. Osteoarthritis of the knee- A radiographic investigation. Acta Radiol Diagn (Stockh) 1968:Suppl 277:7–72.
21. Chang A, Hochberg M, Song J, Dunlop D, Chmiel JS, Nevitt M, et al. Frequency of varus and valgus thrust and factors associated with thrust presence in persons with or at higher risk of developing knee osteoarthritis. Arthritis Rheum 2010;62(5):143–11.
22. Loeser RF. Age-related changes in the musculoskeletal system and the development of osteoarthritis. Clin Geriatr Med 2010; 26:371–86. doi: 10.1016/j.cger.2010.03.002 20699160
23. Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008;58:26–35. doi: 10.1002/art.23176 18163497
24. Andriacchi TP, Koo S, Scanlan SF. Gait mechanics influence healthy cartilage morphology ad osteoarthritis of the knee. J Bone Joint Surg AM 2009;91(Suppl 1):95–101.
25. Resende RA, Kirkwood RN, Deluzio KJ, Hassan EA, Fonseca ST. Ipsilateral and contralateral foot pronation affect lower limb and trunk biomechanics of individuals with knee osteoarthritis during gait. Clin Biomech (Bristol, Avon) 34:30–7, 2016.
26. Dayal N, Chang A, Dunlop D, et al. The natural history of anteroposterior laxity and its role in knee osteoarthritis progression. Arthritis Rheum 2005;52(8):2343–49. doi: 10.1002/art.21277 16052589
27. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 2007;35:1756–69. doi: 10.1177/0363546507307396 17761605
28. Andriacchi TP, Koo S, Scanlan SF. Gait mechanics influence healthy cartilage morphology ad osteoarthritis of the knee. J Bone Joint Surg AM 2009;91(Suppl 1):95–101.
29. Brancheau SP, Walker KM, Northcutt DR. An analysis of outcomes after use of the Maxwell-Brancheau Arthroereisis Implant. J Foot Ankle Surg. 51(1):3–8, 2012. doi: 10.1053/j.jfas.2011.10.019 22196453
30. Saxena A, Via AG, Maffulli N, Chiu H. Subtalar Arthroereisis Implant Removal in Adults: A Prospective Study of 100 Patients. J Foot Ankle Surg. 55(3):500–3, 2016. doi: 10.1053/j.jfas.2015.12.005 26874830
31. Metcalfe SA, Bowling FL, Reeves ND. Subtalar joint arthroereisis in the management of pediatric flexible flatfoot: a critical review of the literature. Foot Ankle Int. 32(12):1127–39, 2011. doi: 10.3113/FAI.2011.1127 22381197
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy