Pharmacological or genetic targeting of Transient Receptor Potential (TRP) channels can disrupt the planarian escape response
Autoři:
Ziad Sabry aff001; Alicia Ho aff002; Danielle Ireland aff001; Christina Rabeler aff001; Olivier Cochet-Escartin aff003; Eva-Maria S. Collins aff001
Působiště autorů:
Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
aff001; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
aff002; Department of Physics, University of California San Diego, La Jolla, California, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226104
Souhrn
In response to noxious stimuli, planarians cease their typical ciliary gliding and exhibit an oscillatory type of locomotion called scrunching. We have previously characterized the biomechanics of scrunching and shown that it is induced by specific stimuli, such as amputation, noxious heat, and extreme pH. Because these specific inducers are known to activate Transient Receptor Potential (TRP) channels in other systems, we hypothesized that TRP channels control scrunching. We found that chemicals known to activate TRPA1 (allyl isothiocyanate (AITC) and hydrogen peroxide) and TRPV (capsaicin and anandamide) in other systems induce scrunching in the planarian species Dugesia japonica and, except for anandamide, in Schmidtea mediterranea. To confirm that these responses were specific to either TRPA1 or TRPV, respectively, we tried to block scrunching using selective TRPA1 or TRPV antagonists and RNA interference (RNAi) mediated knockdown. Unexpectedly, co-treatment with a mammalian TRPA1 antagonist, HC-030031, enhanced AITC-induced scrunching by decreasing the latency time, suggesting an agonistic relationship in planarians. We further confirmed that TRPA1 in both planarian species is necessary for AITC-induced scrunching using RNAi. Conversely, while co-treatment of a mammalian TRPV antagonist, SB-366791, also enhanced capsaicin-induced reactions in D. japonica, combined knockdown of two previously identified D. japonica TRPV genes (DjTRPVa and DjTRPVb) did not inhibit capsaicin-induced scrunching. RNAi of DjTRPVa/DjTRPVb attenuated scrunching induced by the endocannabinoid and TRPV agonist, anandamide. Overall, our results show that although scrunching induction can involve different initial pathways for sensing stimuli, this behavior’s signature dynamical features are independent of the inducer, implying that scrunching is a stereotypical planarian escape behavior in response to various noxious stimuli that converge on a single downstream pathway. Understanding which aspects of nociception are conserved or not across different organisms can provide insight into the underlying regulatory mechanisms to better understand pain sensation.
Klíčová slova:
Cannabinoids – Cilia – Genetic oscillators – Leeches – Planarians – RNA interference – Sequence alignment – Transient receptor potential channels
Zdroje
1. Martin GG. A new function of rhabdites: Mucus production for ciliary gliding. Zoomorphologie. 1978;91: 235–248. doi: 10.1007/BF00999813
2. Rompolas P, Patel-King RS, King SM. An outer arm dynein conformational switch is required for metachronal synchrony of motile cilia in planaria. Mol Biol Cell. 2010;21: 3617–3759. doi: 10.1091/mbc.E10-03-0246
3. Elgeti J, Gompper G. Emergence of metachronal waves in cilia arrays. Proc Natl Acad Sci. 2013;110: 4470–4475. doi: 10.1073/pnas.1218869110 23487771
4. Cochet-Escartin O, Mickolajczk KJ, Collins E-MS. Scrunching: a novel escape gait in planarians. Phys Biol. 2015;12: 055001. doi: 10.1088/1478-3975/12/5/055001
5. Rompolas P, Azimzadeh J, Marshall WF, King SM. Analysis of ciliary assembly and function in planaria. In: Marshall WF, editor. Methods in Enzymology. 2013. pp. 245–264. doi: 10.1016/B978-0-12-397944-5.00012–2
6. Azimzadeh J, Wong ML, Downhour DM, Alvarado AS, Marshall WF. Centrosome loss in the evolution of planarians. Science (80-). 2012;335: 461–463. doi: 10.1126/science.1214457 22223737
7. Patel-King RS, Gilberti RM, Hom EFY, King SM. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia. Mol Biol Cell. 2013;24: 2593–2763. doi: 10.1091/mbc.E12-08-0617
8. Zhang S, Hagstrom D, Hayes P, Graham A, Collins E-MS. Multi-behavioral endpoint testing of an 87-chemical compound library in freshwater planarians. Toxicol Sci. 2019;167: 26–44. doi: 10.1093/toxsci/kfy145 29893936
9. Zhang S, Ireland D, Sipes NS, Behl M, Collins E-MS. Screening for neurotoxic potential of 15 flame retardants using freshwater planarians. Neurotoxicol Teratol. 2019;73: 54–66. doi: 10.1016/j.ntt.2019.03.003 30943442
10. Arenas OM, Zaharieva EE, Para A, Vásquez-Doorman C, Petersen CP, Gallio M. Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception. Nat Neurosci. 2017;20: 1686–1693. doi: 10.1038/s41593-017-0005-0 29184198
11. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem. 2007;76: 387–417. doi: 10.1146/annurev.biochem.75.103004.142819 17579562
12. Birkholz TR, Beane WS. The planarian TRPA1 homolog mediates extraocular behavioral responses to near-ultraviolet light. J Exp Biol. 2017;220: 2616–2625. doi: 10.1242/jeb.152298 28495872
13. Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011;12. doi: 10.1186/gb-2011-12-3-218 21401968
14. Li H. TRP Channel Classification. In: Wang Y, editor. Transient Receptor Potential Canonical Channels and Brain Diseases. Springer, Dordrecht; 2017. pp. 1–8. doi: 10.1007/978-94-024-1088-4_1
15. Dhaka A, Uzzell V, Dubin AE, Mathur J, Petrus M, Bandell M, et al. TRPV1 Is activated by both acidic and basic pH. J Neurosci. 2009;29: 153–158. doi: 10.1523/JNEUROSCI.4901-08.2009 19129393
16. Summers T, Holec S, Burrell BD. Physiological and behavioral evidence of a capsaicin-sensitive TRPV-like channel in the medicinal leech. J Exp Biol. 2014;217: 4167–73. doi: 10.1242/jeb.110049 25324339
17. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature. 1999;398: 436–441. doi: 10.1038/18906 10201375
18. King RS, Newmark PA. In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC Dev Biol. 2013;13: 8. doi: 10.1186/1471-213X-13-8 23497040
19. Aneiros E, Cao L, Papakosta M, Stevens EB, Phillips S, Grimm C. The biophysical and molecular basis of TRPV1 proton gating. EMBO J. 2011;30: 994–1002. doi: 10.1038/emboj.2011.19 21285946
20. Gunthorpe MJ, Benham CD, Randall A, Davis JB. The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends in Pharmacological Sciences. 2002. pp. 183–191. doi: 10.1016/s0165-6147(02)01999-5 11931994
21. Zheng J. Molecular mechanism of TRP channels. Compr Physiol. 2013;3: 221–42. doi: 10.1002/cphy.c120001 23720286
22. Gavva NR, Klionsky L, Qu Y, Shi L, Tamir R, Edenson S, et al. Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem. 2004;279: 20283–20295. doi: 10.1074/jbc.M312577200 14996838
23. Jordt S-E, Julius D. Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell. 2002;108: 421–430. doi: 10.1016/s0092-8674(02)00637-2 11853675
24. Tobin DM, Madsen DM, Kahn-Kirby A, Peckol EL, Moulder G, Barstead R, et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron. 2002;35: 307–18. doi: 10.1016/s0896-6273(02)00757-2 12160748
25. Wittenburg N, Baumeister R. Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. Proc Natl Acad Sci U S A. 1999;96: 10477–82. doi: 10.1073/pnas.96.18.10477 10468634
26. Vriens J, Owsianik G, Voets T, Droogmans G, Nilius B. Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Arch—Eur J Physiol. 2004;449: 213–226. doi: 10.1007/s00424-004-1314-1 15480752
27. Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev. 1991;43.
28. Bais S, Berry CT, Liu X, Ruthel G, Freedman BD, Greenberg RM. Atypical pharmacology of schistosome TRPA1-like ion channels. PLoS Negl Trop Dis. 2018;12: e0006495. doi: 10.1371/journal.pntd.0006495 29746471
29. Bais S, Greenberg RM. TRP channels in schistosomes. Int J Parasitol Drugs Drug Resist. 2016;6: 335–342. doi: 10.1016/j.ijpddr.2016.07.002 27496302
30. Chan JD, Zhang D, Liu X, Zarowiecki M, Berriman M, Marchant JS. Utilizing the planarian voltage-gated ion channel transcriptome to resolve a role for a Ca2 + channel in neuromuscular function and regeneration. Biochim Biophys Acta—Mol Cell Res. 2017;1864: 1036–1045. doi: 10.1016/j.bbamcr.2016.10.010 27771293
31. Inoue T, Yamashita T, Agata K. Thermosensory Signaling by TRPM Is Processed by Brain Serotonergic Neurons to Produce Planarian Thermotaxis. J Neurosci. 2014;34: 15701–15714. doi: 10.1523/JNEUROSCI.5379-13.2014 25411498
32. Andrade EL, Luiz AP, Ferreira J, Calixto JB. Pronociceptive response elicited by TRPA1 receptor activation in mice. Neuroscience. 2008;152: 511–520. doi: 10.1016/j.neuroscience.2007.12.039 18272293
33. Calixto JB, Kassuya CAL, André E, Ferreira J. Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacol Ther. 2005;106: 179–208. doi: 10.1016/j.pharmthera.2004.11.008 15866319
34. Yang F, Xiao X, Cheng W, Yang W, Yu P, Song Z, et al. Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nat Chem Biol. 2015;11: 518–524. doi: 10.1038/nchembio.1835 26053297
35. Ross RA. Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol. 2003;140: 790–801. doi: 10.1038/sj.bjp.0705467 14517174
36. Cebria F. Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture. Development. 2005;132: 3691–3703. doi: 10.1242/dev.01941 16033796
37. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, et al. TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci. 2007;104: 13525–13530. doi: 10.1073/pnas.0705924104 17686976
38. Tóth A, Blumberg PM, Boczán J. Anandamide and the Vanilloid Receptor (TRPV1). Vitamins and Hormones. Elsevier Inc.; 2009. pp. 389–419. doi: 10.1016/S0083-6729(09)81015-7
39. Eid SR, Crown ED, Moore EL, Liang HA, Choong K-C, Dima S, et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol Pain. 2008;4. doi: 10.1186/1744-8069-4-48 18954467
40. Summers T, Wang Y, Hanten B, Burrell BD. Physiological, pharmacological and behavioral evidence for a TRPA1 channel that can elicit defensive responses in the medicinal leech. J Exp Biol. 2015;218: 3023–3031. doi: 10.1242/jeb.120600 26254323
41. Varga A, Németh J, Szabó Á, McDougall JJ, Zhang C, Elekes K, et al. Effects of the novel TRPV1 receptor antagonist SB366791 in vitro and in vivo in the rat. Neurosci Lett. 2005;385: 137–142. doi: 10.1016/j.neulet.2005.05.015 15950380
42. Gunthorpe MJ, Rami HK, Jerman JC, Smart D, Gill CH, Soffin EM, et al. Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology. 2004;46: 133–149. doi: 10.1016/s0028-3908(03)00305-8 14654105
43. Bais S, Churgin MA, Fang-Yen C, Greenberg RM. Evidence for novel pharmacological sensitivities of Transient Receptor Potential (TRP) channels in Schistosoma mansoni. Keiser J, editor. PLoS Negl Trop Dis. 2015;9: e0004295. doi: 10.1371/journal.pntd.0004295 26655809
44. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9: 676–682. doi: 10.1038/nmeth.2019 22743772
45. Thévenaz P, Unser M. User-friendly semiautomated assembly of accurate image mosaics in microscopy. Microsc Res Tech. 2007;70: 135–146. doi: 10.1002/jemt.20393 17133410
46. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40: e115–e115. doi: 10.1093/nar/gks596 22730293
47. Rozanski A, Moon H, Brandl H, Martín-Durán JM, Grohme MA, Hüttner K, et al. PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity. Nucleic Acids Res. 2019;47: D812–D820. doi: 10.1093/nar/gky1070 30496475
48. Hagstrom D, Zhang S, Ho A, Tsai ES, Radić Z, Jahromi A, et al. Planarian cholinesterase: molecular and functional characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity. Arch Toxicol. 2018;92: 1161–1176. doi: 10.1007/s00204-017-2130-7 29167930
49. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25: 1189–1191. doi: 10.1093/bioinformatics/btp033 19151095
50. Notredame C, Higgins DG, Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302: 205–217. doi: 10.1006/jmbi.2000.4042 10964570
51. Takano T, Pulvers JN, Inoue T, Tarui H, Sakamoto H, Agata K, et al. Regeneration-dependent conditional gene knockdown (Readyknock) in planarian: Demonstration of requirement for Djsnap-25 expression in the brain for negative phototactic behavior. Dev Growth Differ. 2007;49: 383–394. doi: 10.1111/j.1440-169X.2007.00936.x 17547648
52. Fenwick AJ, Fowler DK, Wu S-W, Shaffer FJ, Lindberg JEM, Kinch DC, et al. Direct anandamide activation of TRPV1 produces divergent calcium and current responses. Front Mol Neurosci. 2017;10. doi: 10.3389/fnmol.2017.00200 28680392
53. Zygmunt PM, Petersson J2, Andersson DA2, Chuang H-H3, Sùrga M, Rd Ê2, et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature. 1999. Available: www.nature.com
54. Muller C, Morales P, Reggio PH. Cannabinoid ligands targeting TRP channels. Front Mol Neurosci. 2019;11: 487. doi: 10.3389/fnmol.2018.00487 30697147
55. Buttarelli FR, Pontieri FE, Margotta V, Palladini G. Cannabinoid-induced stimulation of motor activity in planaria through an opioid receptor-mediated mechanism. Prog Neuro-Psychopharmacology Biol Psychiatry. 2002;26: 65–68. doi: 10.1016/S0278-5846(01)00230-5
56. Buttarelli FR, Pellicano C, Pontieri FE. Neuropharmacology and behavior in planarians: Translations to mammals. Comp Biochem Physiol—C Toxicol Pharmacol. 2008;147: 399–408. doi: 10.1016/j.cbpc.2008.01.009 18294919
57. Raisinghani M, Zhong L, Jeffry JA, Bishnoi M, Pabbidi RM, Pimentel F, et al. Activation characteristics of transient receptor potential ankyrin 1 and its role in nociception. Am J Physiol Cell Physiol. 2011;301: C587–600. doi: 10.1152/ajpcell.00465.2010 21653898
58. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature. 2007;445: 541–545. doi: 10.1038/nature05544 17237762
59. Gupta R, Saito S, Mori Y, Itoh SG, Okumura H, Tominaga M. Structural basis of TRPA1 inhibition by HC-030031 utilizing species-specific differences. Sci Rep. 2016;6: 37460. doi: 10.1038/srep37460 27874100
60. Paulsen CE, Armache J-P, Gao Y, Cheng Y, Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature. 2015;520: 511–517. doi: 10.1038/nature14367 25855297
61. Pirotte N, Stevens A-S, Fraguas S, Plusquin M, Van Roten A, Van Belleghem F, et al. Reactive oxygen species in planarian regeneration: An upstream necessity for correct patterning and brain formation. Oxid Med Cell Longev. 2015;2015: 392476. doi: 10.1155/2015/392476 26180588
62. Cortright D, Szallasi A. TRP channels and pain. Curr Pharm Des. 2009;15: 1736–1749. doi: 10.2174/138161209788186308 19442187
63. Sanz-Salvador L, Andrés-Borderia A, Ferrer-Montiel A, Planells-Cases R. Agonist- and Ca2+-dependent desensitization of TRPV1 channel targets the receptor to lysosomes for degradation. J Biol Chem. 2012;287: 19462–71. doi: 10.1074/jbc.M111.289751 22493457
64. Akopian AN, Ruparel NB, Patwardhan A, Hargreaves KM. Cannabinoids desensitize capsaicin and mustard oil responses in sensory neurons via TRPA1 activation. J Neurosci. 2008;28: 1064–1075. doi: 10.1523/JNEUROSCI.1565-06.2008 18234885
65. Cochet-Escartin O, Carter JA, Chakraverti-Wuerthwein M, Sinha J, Collins EMS. Slo1 regulates ethanol-induced scrunching in freshwater planarians. Phys Biol. 2016;13: 1–12. doi: 10.1088/1478-3975/13/5/055001 27609598
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy