#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Rapid loss of flight in the Aldabra white-throated rail


Autoři: Janske van de Crommenacker aff001;  Nancy Bunbury aff001;  Hazel A. Jackson aff002;  Lisa J. Nupen aff004;  Ross Wanless aff004;  Frauke Fleischer-Dogley aff001;  Jim J. Groombridge aff002;  Ben H. Warren aff006
Působiště autorů: Seychelles Islands Foundation (SIF), Mont Fleuri, Victoria, Mahé, Seychelles aff001;  Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, Kent, United Kingdom aff002;  Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom aff003;  DST/NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa aff004;  Institute of Marine Affairs and Resources Management, National Taiwan Ocean University, Keelung, Taiwan aff005;  Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France aff006
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0226064

Souhrn

Flight loss has evolved independently in numerous island bird lineages worldwide, and particularly in rails (Rallidae). The Aldabra white-throated rail (Dryolimnas [cuvieri] aldabranus) is the last surviving flightless bird in the western Indian Ocean, and the only living flightless subspecies within Dryolimnas cuvieri, which is otherwise volant across its extant range. Such a difference in flight capacity among populations of a single species is unusual, and could be due to rapid evolution of flight loss, or greater evolutionary divergence than can readily be detected by traditional taxonomic approaches. Here we used genetic and morphological analyses to investigate evolutionary trajectories of living and extinct Dryolimnas cuvieri subspecies. Our data places D. [c.] aldabranus among the most rapid documented avian flight loss cases (within an estimated maximum of 80,000–130,000 years). However, the unusual intraspecific variability in flight capacity within D. cuvieri is best explained by levels of genetic divergence, which exceed those documented between other volant taxa versus flightless close relatives, all of which have full species status. Our results also support consideration of Dryolimnas [cuvieri] aldabranus as sufficiently evolutionary distinct from D. c. cuvieri to warrant management as an evolutionary significant unit. Trait variability among closely related lineages should be considered when assessing conservation status, particularly for traits known to influence vulnerability to extinction (e.g. flightlessness).

Klíčová slova:

Animal flight – Bird flight – Bird genetics – Evolutionary genetics – Islands – Madagascar – Museum collections – Phylogenetic analysis


Zdroje

1. Foster JB. Evolution of mammals on islands. Nature. 1964;202: 234.

2. Grant PR. Evolution on islands. Oxford University Press, USA; 1998.

3. Lomolino MV. Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr. 2005;32: 1683–1699.

4. Whittaker RJ, Fernández-Palacios JM. Island biogeography: ecology, evolution, and conservation. Oxford University Press; 2007.

5. Roff DA. The evolution of flightlessness: is history important? Evol Ecol. 1994;8: 639–657.

6. Chaplin SB, Chaplin SJ. Comparative growth energetics of a migratory and nonmigratory insect: the milkweed bugs. J Anim Ecol. 1981;50: 407–420.

7. Hoy MA, Istock CA, Lumme J, Masaki S, Rainey RC, Rankin MA, et al. Evolution of insect migration and diapause. Springer Science & Business Media; 2012.

8. Wright NA, Steadman DW, Witt CC. Predictable evolution toward flightlessness in volant island birds. Proc Natl Acad Sci. 2016;113: 4765–70. doi: 10.1073/pnas.1522931113 27071105

9. Olson SL. Evolution of the rails of the South Atlantic islands (Aves: Rallidae). Smithson Contrib Zool. 1973;152: 1–53.

10. Humphrey PS, Livezey BC. Flightlessness in flying steamer-ducks. Auk. 1982;99: 368–72.

11. Wanless RM. Can the Aldabra white-throated rail Dryolimnas cuvieri aldabranus fly? Atoll Res Bull. 2003;508: 1–7.

12. Rand AL. The distribution and habits of Madagascar birds: A summary of the field notes of the Mission Zoologique Franco-Anglo-Américaine à Madagascar. Bull Am Mus Nat Hist. 1936;72: 143–499.

13. Olson SL. A classification of the Rallidae. Wilson Bull. 1973;85: 381–416.

14. Livezey BC. A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters, with an emphasis on the rails (Rallidae). Philos Trans R Soc Lond B Biol Sci. 1998;353: 2077–2151.

15. Slikas B, Olson SL, Fleischer RC. Rapid, independent evolution of flightlessness in four species of Pacific Island rails (Rallidae): an analysis based on mitochondrial sequence data. J Avian Biol. 2002;33: 5–14.

16. Steadman DW. Prehistoric extinctions of Pacific island birds: biodiversity meets zooarchaeology. Science. 1995;267: 1123–1131. doi: 10.1126/science.267.5201.1123 17789194

17. Fuller E. Extinct birds. Oxford: Oxford University Press; 2000. 398 p.

18. Szabo JK, Khwaja N, Garnett ST, Butchart SH. Global patterns and drivers of avian extinctions at the species and subspecies level. PloS One. 2012;7: e47080. doi: 10.1371/journal.pone.0047080 23056586

19. Milberg P, Tyrberg T. Naïve birds and noble savages-a review of man-caused prehistoric extinctions of island birds. Ecography. 1993;16: 229–250.

20. Penny MJ, Diamond AW. The white-throated rail Dryolimnas cuvieri on Aldabra. Philos Trans R Soc Lond B Biol Sci. 1971;260: 529–548.

21. Skerrett A, Disley T. Birds of Seychelles. London: A&C Black Publishers Ltd.; 2013.

22. Benson CW. The birds of Aldabra and their status. Atoll Res Bull. 1967;118: 63–111.

23. Collar NJ. The conservation status in 1982 of the Aldabra white-throated rail Dryolimnas cuvieri aldabranus. Bird Conserv Int. 1993;3: 299–305.

24. Safford R, Hawkins F. The Birds of Africa: Volume VIII: The Malagasy Region: Madagascar, Seychelles, Comoros, Mascarenes. Vol. 8. Bloomsbury Publishing, London; 2013

25. Huxley CR. The Aldabra rail. Unpublished typescript, Seychelles Islands Foundation.; 1982.

26. Ridgway R, Abbott WL. On Birds: Collected by WL Abbott in the Seychelles, Amirantes, Gloriosa, Assumption, Aldabra and Adjacent Islands, with notes on habits etc. by the collector. US Government Printing Office; 1896.

27. Cheke A, Hume JP. Lost land of the dodo: The ecological history of Mauritius, Réunion and Rodrigues. T & AD Poyser, London; 2008.

28. Hume JP, Martill D. Repeated evolution of flightlessness in Dryolimnas rails (Aves: Rallidae) after extinction and recolonization on Aldabra. Zool J Linn Soc. 2019;186: 666–72.

29. Hume JP. Systematics, morphology and ecology of rails (Aves: Rallidae) of the Mascarene Islands, with one new species. Zootaxa. 2019;4626: 1–107.

30. Wanless RM, Cunningham J, Hockey PA, Wanless J, White RW, Wiseman R. The success of a soft-release reintroduction of the flightless Aldabra rail (Dryolimnas [cuvieri] aldabranus) on Aldabra Atoll, Seychelles. Biol Conserv. 2002;107: 203–210.

31. Šúr M, van de Crommenacker J, Bunbury N. Assessing effectiveness of reintroduction of the flightless Aldabra rail on Picard Island, Aldabra Atoll, Seychelles. Conserv Evid. 2013;10: 80–4.

32. Hambler C, Newing JM, Hambler K. Population monitoring for the flightless rail Dryolimnas cuvieri aldabranus. Bird Conserv Int. 1993;3: 307–318.

33. Vesey-Fitzgerald D. The birds of the Seychelles. 1. The endemic birds. Ibis. 1940;14: 480–489.

34. Stoddart DR, Benson CW, Peake JF. Ecological change and effects of phosphate mining on Assumption Island. Atoll Res Bull. 1970;136: 121–45.

35. Birdlife International. Species factsheet: Dryolimnas cuvieri. IUCN Red List for birds. Downloaded from http://www.birdlife.org on 28 February 2019.

36. Sinclair I, Langrand O. Birds of the Indian Ocean Islands. Cape Town: Struik Publishers; 2003. 188 p.

37. Del Hoyo J, Elliot A, Sargatal J. Handbook of Birds of the World. Volume 3: Hoatzin to Auks. Barcelona: Birdlife International and Lynx Edicions; 1996. 821 p.

38. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic Acids Symposium Series. 1999. p. 95–98.

39. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23: 2947–2948. doi: 10.1093/bioinformatics/btm404 17846036

40. Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 2011;27: 171–180.

41. Trewick SA. Flightlessness and phylogeny amongst endemic rails (Aves: Rallidae) of the New Zealand region. Philos Trans R Soc Lond B Biol Sci. 1997;352: 429–446. doi: 10.1098/rstb.1997.0031 9163823

42. Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: Combined selection of partitioning 645 schemes and substitution models for phylogenetic analysis. Mol Biol Evol. 2012;29: 1695–701. doi: 10.1093/molbev/mss020 22319168

43. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7: 214. doi: 10.1186/1471-2148-7-214 17996036

44. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE), 2010.

45. Garcia–R JC, Gibb GC, Trewick SA. Eocene diversification of crown group rails (Aves: Gruiformes: Rallidae). PLoS One. 2014;9: e109635. doi: 10.1371/journal.pone.0109635 25291147

46. Thomson J, Walton A. Redetermination of chronology of Aldabra Atoll by 230Th/234U dating. Nature. 1972;240: 145–6.

47. Ho SYW, Kolokotronis S-O, Allaby RG. Elevated substitution rates estimated from ancient DNA sequences. Biol Lett. 2007;3:702–705. doi: 10.1098/rsbl.2007.0377 17785261

48. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17: 368–376. doi: 10.1007/bf01734359 7288891

49. Rambaut A, Drummond AJ. Tracer v1.4, software freely available at http://beast.bio.ed.ac.uk/Tracer. 2007.

50. Rambaut A. FigTree v1. 4. Mol Evol Phylogenetics Epidemiol Edinb UK Univ Edinb Inst Evol Biol. 2012;

51. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313. doi: 10.1093/bioinformatics/btu033 24451623

52. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57: 758–771. doi: 10.1080/10635150802429642 18853362

53. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999;16: 1114–1116.

54. Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6: 1110–1116.

55. Winker K. Specimen shrinkage in Tennessee warblers and “Traill’s” flycatchers (Se encojen especímenes de Vermivora peregrina y Empidonax traillii). J Field Ornithol. 1993;64: 331–336.

56. Winker K. Suggestions for measuring external characters of birds. Ornitol Neotropical. 1998;9: 23–30.

57. Bromham L, Duchêne S, Hua X, Ritchie AM, Duchêne DA, Ho SYW. Bayesian molecular dating: opening up the black box. Biol Rev. 2018;93:1165–91. doi: 10.1111/brv.12390 29243391

58. Feduccia A. The origin and evolution of birds. New Haven: Yale University Press; 1999.

59. Hume JP, Martill D, Hing R. A terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group, Seychelles. PLOS ONE. 2018;13: e0192675. doi: 10.1371/journal.pone.0192675 29590117

60. Burga A, Wang W, Ben-David E, Wolf PC, Ramey AM, Verdugo C, et al. A genetic signature of the evolution of loss of flight in the Galapagos cormorant. Science. 2017;356: eaal3345. doi: 10.1126/science.aal3345 28572335

61. Livezey BC. Flightlessness in the Galápagos cormorant (Compsohalieus [nannopterum] harrisi): heterochrony, giantism and specialization. Zool J Linn Soc. 1992;105: 155–224.

62. McCall R a, Nee S, Harvey PH. The role of wing length in the evolution of avian flightlessness. Evol Ecol. 1998;12: 569–80.

63. Leisler B, Winkler H. Evolution of island warblers: beyond bills and masses. J Avian Biol. 2015;46: 236–44.

64. Braithwaite C. J. R., Taylor J. D., Kennedy W. J., Westoll Thomas Stanley. The evolution of an atoll: the depositional and erosional history of Aldabra. Philos Trans R Soc Lond B Biol Sci. 1 november 1973;266: 307–40.

65. Burney DA, Burney LP, Godfrey LR, Jungers WL, Goodman SM, Wright HT, et al. A chronology for late prehistoric Madagascar. J Hum Evol. 2004;47: 25–63. doi: 10.1016/j.jhevol.2004.05.005 15288523

66. Dufils JM. Forest ecology. In: The natural history of Madagascar ( Goodman SM & Benstead JP, eds). Chicago and London: The University of Chicago Press; 2003. p. 88–96.

67. Green GM, Sussman RW. Deforestation history of the eastern rain forests of Madagascar from satellite images. Science. 1990;248: 212–215. doi: 10.1126/science.248.4952.212 17740137

68. Harper GJ, Steininger MK, Tucker CJ, Juhn D, Hawkins F. Fifty years of deforestation and forest fragmentation in Madagascar. Environ Conserv. 2007;34: 325–333.

69. Warren BH, Safford RJ, Strasberg D, Thébaud C. Bird biogeography and evolution in the Malagasy region. Birds Afr. 2013;8: 35–40.

70. Wanless RM, Hockey PA. Natural history and behavior of the Aldabra Rail (Dryolimnas [cuvieri] aldabranus). Wilson J Ornithol. 2008;120: 50–61.

71. Camoin GF, Montaggioni LF, Braithwaite CJR. Late glacial to post glacial sea levels in the Western Indian Ocean. Mar Geol. 2004;206: 119–46.

72. Stoddart DR, Taylor JD, Fosberg FR, Farrow GE. Geomorphology of Aldabra atoll. Philos Trans R Soc Lond B Biol Sci. 1971;260: 31–66.

73. IUCN. The IUCN Red List of Threatened Species. www.iucnredlist.org. Downloaded on 28 February 2019.

74. Luther DA, Brooks TM, Butchart SH, Hayward MW, Kester ME, Lamoreux J, et al. Determinants of bird conservation-action implementation and associated population trends of threatened species. Conserv Biol. 2016;30: 1338–1346. doi: 10.1111/cobi.12757 27197021

75. Mace GM. The role of taxonomy in species conservation. Philos Trans R Soc Lond B Biol Sci. 2004;359: 711–719. doi: 10.1098/rstb.2003.1454 15253356

76. Zink RM. The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proc R Soc Lond B Biol Sci. 2004;271: 561–564.

77. Wanless RM. Flightless Aldabra rail (Dryolimnas cuvieri aldabranus) kills black rat (Rattus rattus). Ostrich-J Afr Ornithol. 2003;74: 134–134.


Článek vyšel v časopise

PLOS One


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Současné pohledy na riziko v parodontologii
nový kurz
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#