Understanding the combining ability for physiological traits in soybean
Autoři:
Larissa Pereira Ribeiro Teodoro aff001; Leonardo Lopes Bhering aff002; Bruno Ermelindo Lopes Gomes aff002; Cid Naudi Silva Campos aff001; Fabio Henrique Rojo Baio aff001; Ricardo Gava aff001; Carlos Antonio da Silva Júnior aff003; Paulo Eduardo Teodoro aff001
Působiště autorů:
Department of Plant Science, Universidade Federal de Mato Grosso do Sul, Chapadão do Sul, Mato Grosso do Sul, Brazil
aff001; Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
aff002; Department of Geography, Universidade do Estado do Mato Grosso, Sinop, Mato Grosso, Brazil
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226523
Souhrn
Photosynthetic efficiency has become the target of several breeding programs since the positive correlation between photosynthetic rate and yield in soybean suggests that the improvement of photosynthetic efficiency may be a promising target for new yield gains. However, studies on combining ability of soybean genotypes for physiological traits are still scarce in the literature. The objective of this study was to estimate the combining ability of soybean genotypes based on F2 generation aiming to identify superior parents and segregating populations for physiological traits. Twenty-eight F2 populations resulting from partial diallel crossings between eleven lines were evaluated in two crop seasons for the physiological traits: photosynthesis, stomatal conductance, internal CO2 concentration, and transpiration. General combining ability (GCA) of the parents and specific combining ability (SCA) of the F2 populations were estimated. Our findings reveal the predominance of additive effects in controlling the traits. The genotype TMG 7062 IPRO is the most promising parent for programs aiming at photosynthetic efficiency. We have also identified other promising parents and proposed cross-breeding with higher potential for obtaining superior lines for photosynthetic efficiency.
Klíčová slova:
Carbon dioxide – Crops – Photosynthesis – Photosynthetic efficiency – Plant breeding – Seasons – Soybean – Stomata
Zdroje
1. Diers BW, Specht J, Rainey KM, Cregan P, Song Q, Ramasubramanian V, Shannon G. Genetic architecture of soybean yield and agronomic traits. G3-Genes Genom. Genet. 2018; 8: 3367–3375.
2. Wiggins B, Wiggins S, Cunicelli M, Smallwood C, Allen F, West D, Pantalone V. Genetic Gain for Soybean Seed Protein, Oil, and Yield in a Recombinant Inbred Line Population. J. Am. Oil Chem. Soc. 2019; 96: 43–50.
3. Hegstad JM, Nelson RL, Renny-Byfield S, Feng L, Chaky JM. Introgression of novel genetic diversity to improve soybean yield. Theor. Appl. Genet. 2019; 1–12. doi: 10.1007/s00122-018-3219-y
4. Miranda C, Culp C, Škrabišová M, Joshi T, Belzile F, Grant DM, Bilyeu K. Molecular tools for detecting Pdh1 can improve soybean breeding efficiency by reducing yield losses due to pod shatter. Mol. Breeding 2019; 39: 27.
5. Bhering LL, Peixoto LA, Cruz CD. Seleção de genitores. In: Silva FL, Borém A, Sediyama T, Ludke W, editors. Melhoramento da Soja. Viçosa: UFV; 2017.
6. Baker RJ. Issues in diallel analysis. Crop Sci. 1978; 18: 533–536.
7. Gerhardt IFS, do Amaral Junior AT, Pena GF, Guimarães LJM, de Lima VJ, Vivas M, Santos PHAD, Ferreira FRA, Freitas MSM, Kamphorst SH. Genetic effects on the efficiency and responsiveness to phosphorus use in popcorn as estimated by diallel analysis. PloS one 2019; 14: e0216980. doi: 10.1371/journal.pone.0216980 31095632
8. Cruz CD, Vencovsky R. Comparação de alguns métodos de análise dialélica. Rev. Bras. Gen. 1989; 12: 425–438.
9. Cruz CD, Regazzi AJ, Carneiro PCS. Modelos biométricos aplicados ao melhoramento genético. Viçosa: UFV; 2012.
10. Bhullar KS, Gil KS, Khehra AS. Combining ability analysis over F1-F5 generations in diallel crosses of bread wheat. Theor. Appl. Genet. 1979; 55: 77–80. doi: 10.1007/BF00285194 24306488
11. Cho Y, Scott RA. Combining ability of seed vigor and seed yield in soybean. Euphytica 2000; 112: 145–150.
12. Friedrichs MR, Burton JW, Brownie C. Heterosis and Genetic Variance in Soybean Recombinant Inbred Line Populations. Crop Sci. 2016; 56: 2072–2079.
13. Pimentel AJB, Souza MA, Carneiro PCS, Rocha JRASC, Machado JC, Ribeiro G. Partial diallel analysis in advanced generations for selection of wheat segregating populations. Pesq. Agropec. Bras. 2013; 48: 1555–1561.
14. Viana JMS. Heterosis and combining ability analyses from the partial diallel. Bragantia 2007; 66: 641–647.
15. Vencovsky R. Herança quantitativa. In Melhoramento e produção do milho no Brasil; Paterniani E., Ed. Campinas: Fundação Cargill; 1978.
16. Javaid A, Masood S, Minhas NM. Analysis of combining ability in wheat (Triticum aestivum L.) using F2 generation. Pakist. J. Biol. Sci. 2001; 4: 1303–1305.
17. Carvalho ADF, Geraldi IO, Santos VS. Evaluation of F2:4 and F4:6 progenies of soybeans and perspectives of using early generation testing for grain yield. Bragantia 2009; 68: 857–861.
18. Rocha GAF, Pereira FAC, Vello NA. Potential of soybean crosses in early inbreeding generations for grain yield. Crop Breed. Appl. Biotechnol. 2018; 18: 267–275.
19. Rosal CJS, Ramalho MAP, Gonçalves FMA, Abreu AFB. Early selection for common bean grain yield. Bragantia 2000, 59: 189–195.
20. Do Vale NM. Melhoramento de feijão carioca com ênfase em precocidade. D.Sc. thesis, Universidade Federal de Viçosa, Viçosa, 2015. Available from: https://www.locus.ufv.br/handle/123456789/6872
21. Manavalan LP, Guttikonda SK, Tran LS, Nguyen HT. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell. Physiol. 2009; 50: 1260–1276. doi: 10.1093/pcp/pcp082 19546148
22. Ainsworth EA, Yendrek CR, Skoneczka JA, Long SP. Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell. Environ. 2012; 35: 38–52. doi: 10.1111/j.1365-3040.2011.02378.x 21689112
23. Mutava RN, Prince SJK, Syed NH, Song L, Valliyodan B, Chen W, Nguyen HT. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. Plant Physiol. Biochem. 2015; 86: 109–120. doi: 10.1016/j.plaphy.2014.11.010 25438143
24. Koester RP, Nohl BM, Diers BW, Ainsworth EA. Has photosynthetic capacity increased with 80 years of soybean breeding? An examination of historical soybean cultivars. Plant Cell. Environ. 2016; 39: 1058–1067. doi: 10.1111/pce.12675 26565891
25. Todeschini MH, Milioli AS, Rosa AC, Dallacorte LV, Panho MC, Marchese JA, Benin G. Soybean genetic progress in South Brazil: physiological, phenological and agronomic traits. Euphytica 2019; 215: 124.
26. Zhu XG, Long SP, Ort DR. Improving photosynthetic efficiency for greater yield. Ann. Rev. Plant Biol. 2010; 61: 235–261.
27. Morgan PB; Bollero GA, Nelson RL, Dohleman FG, Long SP. Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation. Global Change Biol. 2005; 11: 1856–1865.
28. Dermody O, Long SP, McConnaughay K, DeLucia EH. How do elevated CO2 and O3 affect the interception and utilization of radiation by a soybean canopy? Glob. Change Biol. 2008; 14: 556–564.
29. Wong S, Cowan IR, Farquhar GD. Stomatal conductance correlates with photosynthetic capacity. Nature 1979; 282: 424–426.
30. de Oliveira TB, de Azevedo Peixoto L, Teodoro PE, de Alvarenga AA, Bhering LL, Campo CBH. The number of measurements needed to obtain high reliability for traits related to enzymatic activities and photosynthetic compounds in soybean plants infected with Phakopsora pachyrhizi. PloS one 2018a; 13: e0192189.
31. de Oliveira TB, Peixoto LA, Teodoro PE, Alvarenga AA, Bhering LL, Hoffmann-Campo CB. Relationship between biochemical and photosynthetic traits with Asian soybean rust. An. Acad. Bras. Cien. 2018b; 90: 3925–3940.
32. Raij BV, Cantarella H, Quaggio JA, Furlani AMC. Recomendações de adubação e calagem para o Estado de São Paulo. 2nd ed. Campinas: Instituto Agronômico; 1996.
33. Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems. Austr. J. Biol. Sci. 1956; 9: 463–493.
34. Geraldi I, Miranda Filho J. Adapted models for the analysis of combining ability of varieties in partial diallel crosses. Rev. Bras. Gen. 1988; 11: 419–430.
35. Bueno TV. Capacidade combinatória de genitores de soja nas gerações F1 e F2 visando melhoramento para precocidade e produtividade de grãos. M.Sc. Thesis, Universidade Federal de Viçosa. 2015. Available from: https://www.locus.ufv.br/handle/123456789/11688
36. Cruz CD. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 2013; 35: 271–276.
37. Thompson JA, Schweitzer LE, Nelson RL. Association of specific leaf weight, an estimate of chlorophyll, and chlorophyll concentration with apparent photosynthesis in soybean Photosynth. Res. 1996; 49: 1–10. doi: 10.1007/BF00029422 24271528
38. Zobiole HS, Oliveira L, Morgan RS, Huber DM, Constantin J, Castro C, Oliveira FA, Oliveira A Jr. Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans. Plant Soil 2010; 328: 57–69.
39. Ramalho MAP, Ferreira DF Oliveira A.C. Experimentação em genética e melhoramento de plantas. UFLA: Lavras, Brazil, 2012.
40. Isik F, Li B, Frampton J. Estimates of additive, dominance and epistatic genetic variances from a clonally replicated test of loblolly pine. Forest Sci. 2003; 49: 77–88.
41. Roche D. Stomatal conductance is essential for higher yield potential of C3 crops. Critical Rev. Plant Sci. 2015; 34: 429–453.
42. Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change. Nature 2003; 424: 901–908. doi: 10.1038/nature01843 12931178
43. Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002; 89: 183–189. doi: 10.1093/aob/mcf027 12099349
44. Medrano H, Escalona JM, Bota J, Gulias J, Flexas J. Regulation of photosynthesis of C-3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot. 2002; 89: 895–905. doi: 10.1093/aob/mcf079 12102515
45. Tuzet A, Perrier A, Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant, Cell. Environ. 2003; 26: 1097–1116.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy