The impact of familial risk and early life adversity on emotion and reward processing networks in youth at-risk for bipolar disorder
Autoři:
Lindsay C. Hanford aff001; Kristen Eckstrand aff001; Anna Manelis aff001; Danella M. Hafeman aff001; John Merranko aff001; Cecile D. Ladouceur aff001; Simona Graur aff001; Alicia McCaffrey aff001; Kelly Monk aff001; Lisa K. Bonar aff001; Mary Beth Hickey aff001; Tina R. Goldstein aff001; Benjamin I. Goldstein aff002; David Axelson aff004; Genna Bebko aff001; Michele A. Bertocci aff001; Mary Kay Gill aff001; Boris Birmaher aff001; Mary L. Phillips aff001
Působiště autorů:
Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
aff001; Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
aff002; Pharmacology and Toxicology, University of Toronto, Toronto, Canada
aff003; Nationwide Children’s Hospital and The Ohio State College of Medicine, Columbus, Ohio, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226135
Souhrn
A recently developed risk calculator for bipolar disorder (BD) accounts for clinical and parental psychopathology. Yet, it is understood that both familial predisposition and early life adversity contribute to the development of BD. How the interplay between these two factors influence emotion and reward processing networks in youth at risk for BD remains unclear. In this exploratory analysis, offspring of BD parents performed emotion and reward processing tasks while undergoing a fMRI scan. Risk calculator score was used to assess risk for developing BD in the next 5 years. Environmental risk was tabulated using the Stressful Life Events Schedule (SLES). Emotion and reward processing networks were investigated for genetic and/or environment interactions. Interaction effects were found between risk calculator scores, negative SLES score and activity in right amygdala and bilateral fusiform gyri during the emotion processing task, as well as activity in the fronto-, striatal, and parietal regions during the reward processing task. Our findings are preliminary; however, they support the unique and interactive contributions of both familial and environmental risk factors on emotion and reward processing within OBP. They also identify potential neural targets to guide development of interventions for youth at greatest risk for psychiatric disorders.
Klíčová slova:
Bipolar disorder – Emotions – Environmental impacts – Genetic networks – Mental health and psychiatry – Occipital lobe – Psychological stress – Amygdala
Zdroje
1. Duffy A, Lewitzka U, Doucette S, Andreazza A, Grof P. Biological indicators of illness risk in offspring of bipolar parents: targeting the hypothalamic-pituitary-adrenal axis and immune system. Early Intervention in Psychiatry. 2011;6(2):128–37. doi: 10.1111/j.1751-7893.2011.00323.x 22182213
2. Watson S, Gallagher P, Ritchie JC, Ferrier IN, Young AH. Hypothalamic-pituitary-adrenal axis function in patients with bipolar disorder. The British Journal of Psychiatry. 2004;184(6):496–502.
3. Watson S, Porter R. The role of hypothalamic-pituitary-adrenal axis dysfunction in the attenuated growth hormone response in adolescents with familial loading for affective disorder. Archives of General Psychiatry. 2002;59(2):186–7. doi: 10.1001/archpsyc.59.2.186 11825142
4. Berk M, Kapczinski F, Andreazza A, Dean O, Giorlando F, Maes M, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neuroscience & Biobehavioral Reviews. 2011;35(3):804–17.
5. Andreazza AC, Kauer-Sant‘anna M, Frey BN, Bond DJ, Kapczinski F, Young LT, et al. Oxidative stress markers in bipolar disorder: a meta-analysis. Journal of Affective Disorders. 2008;111(2–3):135–44. doi: 10.1016/j.jad.2008.04.013 18539338.
6. Martinowich K, Schloesser RJ, Manji HK. Bipolar disorder: from genes to behavior pathways. The Journal of Clinical Investigation. 2009;119(4):726–36. doi: 10.1172/JCI37703 19339764
7. Strakowski SM, Adler CM, Almeida J, Altshuler LL, Blumberg HP, Chang KD, et al. The functional neuroanatomy of bipolar disorder: a consensus model. Bipolar Disorders. 2012;14(4):313–25. doi: 10.1111/j.1399-5618.2012.01022.x 22631617
8. Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry. 2008;13(9):833–57.
9. McEwen BS. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy of Sciences. 2004;1032(1):1–7.
10. McEwen BS. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology. 2008;583(2):174–85.
11. Kapczinski F, Vieta E, Andreazza AC, Frey BN, Gomes FA, Tramontina J, et al. Allostatic load in bipolar disorder: implications for pathophysiology and treatment. Neuroscience & Biobehavioral Reviews. 2008;32(4):675–92.
12. Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2010;35(1):192–216. doi: 10.1038/npp.2009.104 19693001; PubMed Central PMCID: PMC3055427.
13. Blond BN, Fredericks CA, Blumberg HP. Functional neuroanatomy of bipolar disorder: structure, function, and connectivity in an amygdala-anterior paralimbic neural system. Bipolar Disorders. 2012;14(4):340–55. doi: 10.1111/j.1399-5618.2012.01015.x 22631619; PubMed Central PMCID: PMC3880745.
14. Bienvenu O, Davydow D, Kendler K. Psychiatric ‘diseases’ versus behavioral disorders and degree of genetic influence. Psychological medicine. 2011;41(1):33–40. doi: 10.1017/S003329171000084X 20459884
15. Kieseppa T, Partonen T, Haukka J, Kaprio J, Lonnqvist J. High concordance of bipolar I disorder in a nationwide sample of twins. The American Journal of Psychiatry. 2004;161(10):1814–21. doi: 10.1176/ajp.161.10.1814 15465978.
16. McGuffin P, Rijsdijk F, Andrew M. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Archives of General Psychiatry. 2003;60(5):497–502. 10245622975130147796related:1Js278_DL44J. doi: 10.1001/archpsyc.60.5.497 12742871
17. Dean K, Stevens H, Mortensen PB, Murray RM, Walsh E, Pedersen CB. Full spectrum of psychiatric outcomes among offspring with parental history of mental disorder. Archives of General Psychiatry. 2010;67(8):822–9. doi: 10.1001/archgenpsychiatry.2010.86 20679590.
18. Hillegers MHJ, Reichart CG, Wals M, Verhulst FC, Ormel J, Nolen WA. Five-year prospective outcome of psychopathology in the adolescent offspring of bipolar parents. Bipolar Disorders. 2005;7(4):344–50. doi: 10.1111/j.1399-5618.2005.00215.x 16026487
19. Birmaher B, Axelson D, Goldstein B, Strober M, Gill MK, Hunt J, et al. Four-year longitudinal course of children and adolescents with bipolar spectrum disorders: the Course and Outcome of Bipolar Youth (COBY) study. The American Journal of Psychiatry. 2009;166(7):795–804. doi: 10.1176/appi.ajp.2009.08101569 19448190; PubMed Central PMCID: PMC2828047.
20. Hafeman DM, Merranko J, Goldstein TR, Axelson D, Goldstein BI, Monk K, et al. Assessment of a person-level risk calculator to predict new-onset bipolar spectrum disorder in youth at familial risk. JAMA Psychiatry. 2017;74(8):841–7. doi: 10.1001/jamapsychiatry.2017.1763 28678992
21. Talge NM, Neal C, Glover V, Early Stress TR, Prevention Science Network F, Neonatal Experience on C, et al. Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? Journal of child psychology and psychiatry, and allied disciplines. 2007;48(3–4):245–61. doi: 10.1111/j.1469-7610.2006.01714.x 17355398
22. Johnson JG, Cohen P, Brook JS. Associations between bipolar disorder and other psychiatric disorders during adolescence and early adulthood: a community-based longitudinal investigation. The American Journal of Psychiatry. 2000;157(10):1679–81. doi: 10.1176/appi.ajp.157.10.1679 11007724
23. Versace A, Ladouceur CD, Romero S, Birmaher B, Axelson DA, Kupfer DJ, et al. Altered development of white matter in youth at high familial risk for bipolar disorder: a diffusion tensor imaging study. Journal of the American Academy of Child & Adolescent Psychiatry. 2010;49(12):1249–59. e1.
24. Adolphs R, Tranel D, Damasio H, Damasio A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature. 1994;372(6507):669. doi: 10.1038/372669a0 7990957.
25. Davis M, Whalen PJ. The amygdala: vigilance and emotion. Molecular Psychiatry. 2001;6(1):13. doi: 10.1038/sj.mp.4000812 11244481
26. Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48(2):175–87. doi: 10.1016/j.neuron.2005.09.025 16242399
27. Kanske P, Schönfelder S, Forneck J, Wessa M. Impaired regulation of emotion: neural correlates of reappraisal and distraction in bipolar disorder and unaffected relatives. Translational Psychiatry. 2015;5(1):e497.
28. Olsavsky AK, Brotman MA, Rutenberg JG, Muhrer EJ, Deveney CM, Fromm SJ, et al. Amygdala hyperactivation during face emotion processing in unaffected youth at risk for bipolar disorder. Journal of the American Academy of Child & Adolescent Psychiatry. 2012;51(3):294–303. doi: 10.1016/j.jaac.2011.12.008 22365465; PubMed Central PMCID: PMC3292775.
29. Manelis A, Ladouceur CD, Graur S, Monk K, Bonar LK, Hickey MB, et al. Altered amygdala-prefrontal response to facial emotion in offspring of parents with bipolar disorder. Brain. 2015:awv176.
30. Surguladze SA, Marshall N, Schulze K, Hall M-H, Walshe M, Bramon E, et al. Exaggerated neural response to emotional faces in patients with bipolar disorder and their first-degree relatives. Neuroimage. 2010;53(1):58–64. doi: 10.1016/j.neuroimage.2010.05.069 20595014
31. Dima D, Roberts R, Frangou S. Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder. Translational Psychiatry. 2016;6(1):e706.
32. Ladouceur CD, Diwadkar VA, White R, Bass J, Birmaher B, Axelson DA, et al. Fronto-limbic function in unaffected offspring at familial risk for bipolar disorder during an emotional working memory paradigm. Developmental Cognitive Neuroscience. 2013;5:185–96. doi: 10.1016/j.dcn.2013.03.004 23590840; PubMed Central PMCID: PMC3676715.
33. Roberts G, Green MJ, Breakspear M, McCormack C, Frankland A, Wright A, et al. Reduced inferior frontal gyrus activation during response inhibition to emotional stimuli in youth at high risk of bipolar disorder. Biological Psychiatry. 2013;74(1):55–61. doi: 10.1016/j.biopsych.2012.11.004 23245750
34. Sepede G, De Berardis D, Campanella D, Perrucci MG, Ferretti A, Salerno RM, et al. Neural correlates of negative emotion processing in bipolar disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2015;60:1–10. doi: 10.1016/j.pnpbp.2015.01.016 25661850
35. Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P. The anterior cingulate cortex. Annals of the New York Academy of Sciences. 2001;935(1):107–17. 11411161.
36. Patel SR, Sierra-Mercado D, Martinez-Rubio C, Eskandar EN. Human single neuron reward processing in the basal ganglia and anterior cingulate. Single Neuron Studies of the Human Brain: Probing Cognition. 2014:205–28.
37. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, et al. Dorsal anterior cingulate cortex: A role in reward-based decision making. Proceedings of the National Academy of Sciences. 2002;99(1):523–8. doi: 10.1073/pnas.012470999 11756669
38. Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE. Frontal cortex and reward-guided learning and decision-making. Neuron. 2011;70(6):1054–69. doi: 10.1016/j.neuron.2011.05.014 21689594
39. Shidara M, Richmond BJ. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science. 2002;296(5573):1709–11. doi: 10.1126/science.1069504 12040201
40. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35(1):4–26. doi: 10.1038/npp.2009.129 19812543
41. Niki H, Watanabe M. Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Research. 1979;171(2):213–24. doi: 10.1016/0006-8993(79)90328-7 111772
42. Camara E, Rodriguez-Fornells A, Ye Z, Münte TF. Reward networks in the brain as captured by connectivity measures. Frontiers in Neuroscience. 2009;3:34. doi: 10.3389/neuro.01.001.2009
43. Nusslock R, Almeida JR, Forbes EE, Versace A, Frank E, LaBarbara EJ, et al. Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disorders. 2012;14(3):249–60. doi: 10.1111/j.1399-5618.2012.01012.x 22548898
44. Whitton AE, Treadway MT, Pizzagalli DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Current Opinion in Psychiatry. 2015;28(1):7. doi: 10.1097/YCO.0000000000000122 25415499
45. Mason L, O’Sullivan N, Montaldi D, Bentall RP, El-Deredy W. Decision-making and trait impulsivity in bipolar disorder are associated with reduced prefrontal regulation of striatal reward valuation. Brain. 2014;137(8):2346–55.
46. Caseras X, Lawrence NS, Murphy K, Wise RG, Phillips ML. Ventral striatum activity in response to reward: differences between bipolar I and II disorders. American Journal of Psychiatry. 2013;170(5):533–41. doi: 10.1176/appi.ajp.2012.12020169 23558337
47. Singh MK, Kelley RG, Howe ME, Reiss AL, Gotlib IH, Chang KD. Reward processing in healthy offspring of parents with bipolar disorder. JAMA Psychiatry. 2014;71(10):1148–56. doi: 10.1001/jamapsychiatry.2014.1031 25142103
48. Linke J, King AV, Rietschel M, Strohmaier J, Hennerici M, Gass A, et al. Increased medial orbitofrontal and amygdala activation: evidence for a systems-level endophenotype of bipolar I disorder. American Journal of Psychiatry. 2012;169(3):316–25. doi: 10.1176/appi.ajp.2011.11050711 22267184
49. Manelis A, Ladouceur CD, Graur S, Monk K, Bonar LK, Hickey MB, et al. Altered functioning of reward circuitry in youth offspring of parents with bipolar disorder. Psychological Medicine. 2016;46(1):197–208. doi: 10.1017/S003329171500166X 26373895
50. Dore G, Romans SE. Impact of bipolar affective disorder on family and partners. Journal of Affective Disorders. 2001;67(1):147–58.
51. Jönsson PD, Skärsäter I, Wijk H, Danielson E. Experience of living with a family member with bipolar disorder. International Journal of Mental Health Nursing. 2011;20(1):29–37. doi: 10.1111/j.1447-0349.2010.00704.x 21199242
52. Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biological Psychiatry. 2012;71(4):286–93. doi: 10.1016/j.biopsych.2011.10.021 22112927
53. Suzuki H, Luby JL, Botteron KN, Dietrich R, McAvoy MP, Barch DM. Early life stress and trauma and enhanced limbic activation to emotionally valenced faces in depressed and healthy children. Journal of the American Academy of Child & Adolescent Psychiatry. 2014;53(7):800–13. e10.
54. Ganzel BL, Kim P, Gilmore H, Tottenham N, Temple E. Stress and the healthy adolescent brain: evidence for the neural embedding of life events. Development and Psychopathology. 2013;25(4pt1):879–89.
55. Herringa RJ, Phillips ML, Fournier JC, Kronhaus DM, Germain A. Childhood and adult trauma both correlate with dorsal anterior cingulate activation to threat in combat veterans. Psychological Medicine. 2013;43(7):1533. doi: 10.1017/S0033291712002310 23171514
56. Admon R, Lubin G, Stern O, Rosenberg K, Sela L, Ben-Ami H, et al. Human vulnerability to stress depends on amygdala's predisposition and hippocampal plasticity. Proceedings of the National Academy of Sciences. 2009;106(33):14120–5. doi: 10.1073/pnas.0903183106 19666562; PubMed Central PMCID: PMC2729030.
57. Banihashemi L, Sheu LK, Midei AJ, Gianaros PJ. Childhood physical abuse predicts stressor-evoked activity within central visceral control regions. Social Cognitive and Affective Neuroscience. 2015;10(4):474–85. doi: 10.1093/scan/nsu073 24847113
58. Kim P, Evans GW, Angstadt M, Ho SS, Sripada CS, Swain JE, et al. Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proceedings of the National Academy of Sciences. 2013;110(46):18442–7.
59. Maheu FS, Dozier M, Guyer AE, Mandell D, Peloso E, Poeth K, et al. A preliminary study of medial temporal lobe function in youths with a history of caregiver deprivation and emotional neglect. Cognitive, Affective, & Behavioral Neuroscience. 2010;10(1):34–49.
60. Tottenham N. Human amygdala development in the absence of species‐expected caregiving. Developmental Psychobiology. 2012;54(6):598–611. doi: 10.1002/dev.20531 22714586
61. Gee DG, Gabard-Durnam LJ, Flannery J, Goff B, Humphreys KL, Telzer EH, et al. Early developmental emergence of human amygdala–prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences. 2013;110(39):15638–43.
62. Dillon DG, Holmes AJ, Birk JL, Brooks N, Lyons-Ruth K, Pizzagalli DA. Childhood adversity is associated with left basal ganglia dysfunction during reward anticipation in adulthood. Biological Psychiatry. 2009;66(3):206–13. doi: 10.1016/j.biopsych.2009.02.019 19358974
63. Mehta MA, Gore-Langton E, Golembo N, Colvert E, Williams SC, Sonuga-Barke E. Hyporesponsive reward anticipation in the basal ganglia following severe institutional deprivation early in life. Journal of Cognitive Neuroscience. 2010;22(10):2316–25. doi: 10.1162/jocn.2009.21394 19929329
64. Ganzel BL, Morris PA, Wethington E. Allostasis and the human brain: Integrating models of stress from the social and life sciences. Psychological Review. 2010;117(1):134. doi: 10.1037/a0017773 20063966
65. Callaghan BL, Tottenham N. The stress acceleration hypothesis: Effects of early-life adversity on emotion circuits and behavior. Current Opinion in Behavioral Sciences. 2016;7:76–81. doi: 10.1016/j.cobeha.2015.11.018 29644262
66. Tottenham N, Hare TA, Quinn BT, McCarry TW, Nurse M, Gilhooly T, et al. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science. 2010;13(1):46–61. doi: 10.1111/j.1467-7687.2009.00852.x 20121862
67. Birmaher B, Axelson D, Goldstein B, Monk K, Kalas C, Obreja M, et al. Psychiatric Disorders in Preschool Offspring of Parents With Bipolar Disorder: The Pittsburgh Bipolar Offspring Study (BIOS). The American Journal of Psychiatry. 2010;167(3):321–30. doi: 10.1176/appi.ajp.2009.09070977 20080982.
68. Horwitz SM, Demeter C, Pagano ME, Youngstrom EA, Fristad MA, Arnold LE, et al. Longitudinal Assessment of Manic Symptoms (LAMS) Study: background, design and initial screening results. The Journal of Clinical Psychiatry. 2010;71(11):1511. doi: 10.4088/JCP.09m05835yel 21034684
69. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, et al. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. Journal of the American Academy of Child & Adolescent Psychiatry. 1997;36(7):980–8.
70. First MB, Spitzer RL, Gibbon M, Williams JB. Structured Clinical Interview for DSM-IV Axis I Disorders: Patient Edition (February 1996 Final), SCID-I/P: Biometrics Research Department, New York State Psychiatric Institute; 1998.
71. Axelson D, Birmaher BJ, Brent D, Wassick S, Hoover C, Bridge J, et al. A preliminary study of the Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children mania rating scale for children and adolescents. Mary Ann Liebert, Inc.; 2003.
72. Gerson AC, Gerring JP, Freund L, Joshi PT, Capozzoli J, Brady K, et al. The Children's Affective Lability Scale: a psychometric evaluation of reliability. Psychiatry Research. 1996;65(3):189–98. doi: 10.1016/s0165-1781(96)02851-x 9029668
73. Birmaher B, Brent DA, Chiappetta L, Bridge J, Monga S, Baugher M. Psychometric properties of the Screen for Child Anxiety Related Emotional Disorders (SCARED): a replication study. Journal of the American Academy of Child & Adolescent Psychiatry. 1999;38(10):1230–6.
74. Birmaher B, Khetarpal S, Brent D, Cully M, Balach L, Kaufman J, et al. The screen for child anxiety related emotional disorders (SCARED): scale construction and psychometric characteristics. Journal of the American Academy of Child & Adolescent Psychiatry. 1997;36(4):545–53.
75. Shaffer D, Gould MS, Brasic J, Ambrosini P, Fisher P, Bird H, et al. A children's global assessment scale (CGAS). Archives of General Psychiatry. 1983;40(11):1228–31. doi: 10.1001/archpsyc.1983.01790100074010 6639293
76. Wells BJ, Kattan MW, Cooper GS, Jackson L, Koroukian S. Colorectal cancer predicted risk online (CRC-PRO) calculator using data from the multi-ethnic cohort study. The Journal of the American Board of Family Medicine. 2014;27(1):42–55. doi: 10.3122/jabfm.2014.01.130040 24390885
77. D’agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53. doi: 10.1161/CIRCULATIONAHA.107.699579 18212285
78. Cannon TD, Yu C, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, et al. An individualized risk calculator for research in prodromal psychosis. American Journal of Psychiatry. 2016;173(10):980–8. doi: 10.1176/appi.ajp.2016.15070890 27363508
79. Smoller JW, Finn CT, editors. Family, twin, and adoption studies of bipolar disorder. American Journal of Medical Genetics Part C: Seminars in Medical Genetics; 2003: Wiley Online Library.
80. Williamson DE, Birmaher B, Ryan ND, Shiffrin TP, Lusky JA, Protopapa J, et al. The stressful life events schedule for children and adolescents: development and validation. Psychiatry Research. 2003;119(3):225–41. doi: 10.1016/s0165-1781(03)00134-3 12914894
81. Pan LA, Goldstein TR, Rooks BT, Hickey M, Fan JY, Merranko J, et al. The Relationship Between Stressful Life Events and Axis I Diagnoses Among Adolescent Offspring of Probands With Bipolar and Non-Bipolar Psychiatric Disorders and Healthy Controls: The Pittsburgh Bipolar Offspring Study (BIOS). The Journal of Clinical Psychiatry. 2017;78(3):e234. doi: 10.4088/JCP.15m09815 28199068
82. Bebko G, Bertocci MA, Fournier JC, Hinze AK, Bonar L, Almeida JR, et al. Parsing dimensional vs diagnostic category–related patterns of reward circuitry function in behaviorally and emotionally dysregulated youth in the longitudinal assessment of manic symptoms study. JAMA Psychiatry. 2014;71(1):71–80. doi: 10.1001/jamapsychiatry.2013.2870 24285346
83. Haber SN. 11 Neuroanatomy of Reward: A View from the Ventral Striatum. Neurobiology of Sensation and Reward. 2011:235.
84. Friston K, Buechel C, Fink G, Morris J, Rolls E, Dolan R. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage. 1997;6(3):218–29. doi: 10.1006/nimg.1997.0291 9344826
85. O’Reilly JX, Woolrich MW, Behrens TE, Smith SM, Johansen-Berg H. Tools of the trade: psychophysiological interactions and functional connectivity. Social Cognitive and Affective Neuroscience. 2012;7(5):604–9. doi: 10.1093/scan/nss055 22569188
86. Breheny P, Burchett W. Visualizing regression models using visreg. 2012.
87. Worsley K. Statistical analysis of activation images. Functional MRI: An Introduction to Methods. 2001;14:251–70.
88. Pavuluri MN, Passarotti AM, Harral EM, Sweeney JA. An fMRI study of the neural correlates of incidental versus directed emotion processing in pediatric bipolar disorder. Journal of the American Academy of Child & Adolescent Psychiatry. 2009;48(3):308–19. doi: 10.1097/CHI.0b013e3181948fc7 19242292; PubMed Central PMCID: PMC2772656.
89. Wessa M, Linke J. Emotional processing in bipolar disorder: behavioural and neuroimaging findings. International Review of Psychiatry. 2009;21(4):357–67. doi: 10.1080/09540260902962156 20374149
90. Vuilleumier P, Richardson MP, Armony JL, Driver J, Dolan RJ. Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neuroscience. 2004;7(11):1271–8. doi: 10.1038/nn1341 15494727
91. Bauer IE, Frazier TW, Meyer TD, Youngstrom E, Zunta–Soares GB, Soares JC. Affective processing in pediatric bipolar disorder and offspring of bipolar parents. Journal of Child and Adolescent Psychopharmacology. 2015;25(9):684–90. doi: 10.1089/cap.2015.0076 26468988
92. Keener M, Fournier J, Mullin B, Kronhaus D, Perlman S, LaBarbara E, et al. Dissociable patterns of medial prefrontal and amygdala activity to face identity versus emotion in bipolar disorder. Psychological medicine. 2012;42(9):1913–24. doi: 10.1017/S0033291711002935 22273442
93. Sroufe LA. Attachment and development: A prospective, longitudinal study from birth to adulthood. Attachment & Human Development. 2005;7(4):349–67.
94. Greenberg MT, Speltz ML, Deklyen M. The role of attachment in the early development of disruptive behavior problems. Development and Psychopathology. 1993;5(1–2):191–213.
95. Lyons-Ruth K, Dutra L, Schuder MR, Bianchi I. From infant attachment disorganization to adult dissociation: relational adaptations or traumatic experiences? Psychiatric Clinics of North America. 2006;29(1):63–86. doi: 10.1016/j.psc.2005.10.011 16530587
96. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nature Reviews Neuroscience. 2011;12(4):217. doi: 10.1038/nrn3008 21415848
97. Mesulam M. Large‐scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology. 1990;28(5):597–613. doi: 10.1002/ana.410280502 2260847
98. Dickstein DP, Finger EC, Skup M, Pine DS, Blair JR, Leibenluft E. Altered neural function in pediatric bipolar disorder during reversal learning. Bipolar Disorders. 2010;12(7):707–19. doi: 10.1111/j.1399-5618.2010.00863.x 21040288
99. Chase H, Fournier J, Bertocci M, Greenberg T, Aslam H, Stiffler R, et al. A pathway linking reward circuitry, impulsive sensation-seeking and risky decision-making in young adults: identifying neural markers for new interventions. Translational Psychiatry. 2017;7(4):e1096. doi: 10.1038/tp.2017.60 28418404
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy