#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Classification of flavors in cigarillos and little cigars and their variable cellular and acellular oxidative and cytotoxic responses


Autoři: Gina R. Lawyer aff001;  Monica Jackson aff001;  Melanie Prinz aff001;  Thomas Lamb aff001;  Qixin Wang aff001;  Thivanka Muthumalage aff001;  Irfan Rahman aff001
Působiště autorů: Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0226066

Souhrn

Flavored tobacco products are increasing in popularity but remain unregulated, with the exception of the ban on flavored conventional cigarettes. Lack of regulation of cigarillos and little cigars allows vendors to have their own version of popular flavors, each with different chemical components. A new classification system was created for flavored cigars in order to easily communicate our results with the scientific community. To understand the physicochemical characteristics of flavored little cigars and cigarillo smoke, size distribution and concentration of particulate matter in smoke were determined. Acellular reactive oxygen species generation was measured as an indirect measurement of the potential to cause oxidative stress in cells. In addition, cigarillo smoke extract treatment on bronchial epithelial (Beas-2b) cells were assessed to determine the flavor-induced cellular toxicity. Flavored cigars/cigarillos showed significant variability in the tested parameters between flavors as well as brands of the same flavor, but most of the cigars showed higher potential of generating oxidative stress, than research grade cigarettes. Flavored cigars produced maximum particle concentrations at 1.0μm and 4.0 μm compared with 3R4F reference research cigarettes. A differential cytotoxic response was observed with cigarillo smoke extract treatments, with “fruits/candy” and “drinks” being the most toxic, but were not more cytotoxic than smoke from cigarettes. These cigarillos with flavors must be well characterized for toxicity in order to prevent adverse effects caused by exposure to flavor chemicals. Our study provides insight into understanding the potential health effects of flavor-infused cigars/cigarillos and the need for the regulation of those flavoring chemicals in these products. Future research is directed to determine the flavoring toxicity of little cigars and cigarillos in vivo studies.

Klíčová slova:

Fruits – Hydrogen peroxide – Owls – Particulates – Smoking habits – Smoking related disorders – Toxicity – Grapes


Zdroje

1. Ghosh A, Nethery RC, Herring AH, Tarran R. Flavored little cigar smoke induces cytotoxicity and apoptosis in airway epithelia. Cell Death Discov. 2017;3:17019. Epub 2017/05/13. doi: 10.1038/cddiscovery.2017.19 28496992; PubMed Central PMCID: PMC5402522.

2. Wackowski OA, Delnevo CD. Young Adults' Risk Perceptions of Various Tobacco Products Relative to Cigarettes: Results From the National Young Adult Health Survey. Health Educ Behav. 2016;43(3):328–36. Epub 2015/08/26. doi: 10.1177/1090198115599988 26304709; PubMed Central PMCID: PMC4766060.

3. O'Connor RJ. Non-cigarette tobacco products: what have we learnt and where are we headed? Tob Control. 2012;21(2):181–90. Epub 2012/02/22. doi: 10.1136/tobaccocontrol-2011-050281 22345243; PubMed Central PMCID: PMC3716250.

4. Hamad SH, Johnson NM, Tefft ME, Brinkman MC, Gordon SM, Clark PI, et al. Little Cigars vs 3R4F Cigarette: Physical Properties and HPHC Yields. Tob Regul Sci. 2017;3(4):459–78. Epub 2018/06/19. doi: 10.18001/TRS.3.4.7 29911130; PubMed Central PMCID: PMC5998811.

5. Kostygina G, Glantz SA, Ling PM. Tobacco industry use of flavours to recruit new users of little cigars and cigarillos. Tob Control. 2016;25(1):66–74. Epub 2014/10/31. doi: 10.1136/tobaccocontrol-2014-051830 25354674; PubMed Central PMCID: PMC4414663.

6. Chang CM, Corey CG, Rostron BL, Apelberg BJ. Systematic review of cigar smoking and all cause and smoking related mortality. BMC Public Health. 2015;15:390. Epub 2015/04/25. doi: 10.1186/s12889-015-1617-5 25907101; PubMed Central PMCID: PMC4408600.

7. Baker F, Ainsworth SR, Dye JT, Crammer C, Thun MJ, Hoffmann D, et al. Health risks associated with cigar smoking. JAMA. 2000;284(6):735–40. Epub 2000/08/06. doi: 10.1001/jama.284.6.735 10927783.

8. Courtemanche CJ, Palmer MK, Pesko MF. Influence of the Flavored Cigarette Ban on Adolescent Tobacco Use. Am J Prev Med. 2017;52(5):e139–e46. Epub 2017/01/14. doi: 10.1016/j.amepre.2016.11.019 28081999; PubMed Central PMCID: PMC5401634.

9. Odani S, Armour B, Agaku IT. Flavored tobacco product use and its association with indicators of tobacco dependence among U.S. adults, 2014–2015. Nicotine Tob Res. 2019. Epub 2019/06/11. doi: 10.1093/ntr/ntz092 31180498.

10. Erythropel HC, Kong G, deWinter TM, O'Malley SS, Jordt SE, Anastas PT, et al. Presence of High-Intensity Sweeteners in Popular Cigarillos of Varying Flavor Profiles. JAMA. 2018;320(13):1380–3. Epub 2018/10/05. doi: 10.1001/jama.2018.11187 30285168; PubMed Central PMCID: PMC6233844.

11. Krusemann EJ, Visser WF, Cremers JW, Pennings J, Talhout R. Identification of flavour additives in tobacco products to develop a flavour library. Tob Control. 2018;27(1):105–11. Epub 2017/02/13. doi: 10.1136/tobaccocontrol-2016-052961 28190004; PubMed Central PMCID: PMC5801651.

12. Brown JE, Luo W, Isabelle LM, Pankow JF. Candy flavorings in tobacco. N Engl J Med. 2014;370(23):2250–2. Epub 2014/05/09. doi: 10.1056/NEJMc1403015 24805984.

13. Allen JG, Flanigan SS, LeBlanc M, Vallarino J, MacNaughton P, Stewart JH, et al. Flavoring Chemicals in E-Cigarettes: Diacetyl, 2,3-Pentanedione, and Acetoin in a Sample of 51 Products, Including Fruit-, Candy-, and Cocktail-Flavored E-Cigarettes. Environ Health Perspect. 2016;124(6):733–9. Epub 2015/12/09. doi: 10.1289/ehp.1510185 26642857; PubMed Central PMCID: PMC4892929.

14. Huang MF, Lin WL, Ma YC. A study of reactive oxygen species in mainstream of cigarette. Indoor Air. 2005;15(2):135–40. Epub 2005/03/02. doi: 10.1111/j.1600-0668.2005.00330.x 15737156.

15. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–90. Epub 2012/01/31. doi: 10.1016/j.cellsig.2012.01.008 22286106; PubMed Central PMCID: PMC3454471.

16. Rosanna DP, Salvatore C. Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des. 2012;18(26):3889–900. Epub 2012/05/29. doi: 10.2174/138161212802083716 22632750.

17. Sundar IK, Yao H, Rahman I. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal. 2013;18(15):1956–71. Epub 2012/09/18. doi: 10.1089/ars.2012.4863 22978694; PubMed Central PMCID: PMC3624634.

18. Ghio AJ, Hilborn ED, Stonehuerner JG, Dailey LA, Carter JD, Richards JH, et al. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med. 2008;178(11):1130–8. Epub 2008/08/30. doi: 10.1164/rccm.200802-334OC 18723436.

19. Dickinson DM, Johnson SE, Coleman BN, Tworek C, Tessman GK, Alexander J. The Language of Cigar Use: Focus Group Findings on Cigar Product Terminology. Nicotine Tob Res. 2016;18(5):850–6. Epub 2016/01/31. doi: 10.1093/ntr/ntv285 26826209; PubMed Central PMCID: PMC5698903.

20. Protano C, Avino P, Manigrasso M, Vivaldi V, Perna F, Valeriani F, et al. Environmental Electronic Vape Exposure from Four Different Generations of Electronic Cigarettes: Airborne Particulate Matter Levels. Int J Environ Res Public Health. 2018;15(10). Epub 2018/10/05. doi: 10.3390/ijerph15102172 30282910; PubMed Central PMCID: PMC6210766.

21. Park HS, Kim SR, Lee YC. Impact of oxidative stress on lung diseases. Respirology. 2009;14(1):27–38. Epub 2009/01/16. doi: 10.1111/j.1440-1843.2008.01447.x 19144046.

22. Nakayama T, Church DF, Pryor WA. Quantitative analysis of the hydrogen peroxide formed in aqueous cigarette tar extracts. Free Radic Biol Med. 1989;7(1):9–15. Epub 1989/01/01. doi: 10.1016/0891-5849(89)90094-4 2753397.

23. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89–96. Epub 2008/06/01. 23675073; PubMed Central PMCID: PMC3614697.

24. Chen Z, Wang D, Liu X, Pei W, Li J, Cao Y, et al. Oxidative DNA damage is involved in cigarette smoke-induced lung injury in rats. Environ Health Prev Med. 2015;20(5):318–24. Epub 2015/05/15. doi: 10.1007/s12199-015-0469-z 25967734; PubMed Central PMCID: PMC4550611.

25. Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health. 2009;6(2):445–62. Epub 2009/05/15. doi: 10.3390/ijerph6020445 19440393; PubMed Central PMCID: PMC2672368.

26. Pickworth WB, Rosenberry ZR, Yi D, Pitts EN, Lord-Adem W, Koszowski B. Cigarillo and Little Cigar Mainstream Smoke Constituents from Replicated Human Smoking. Chem Res Toxicol. 2018;31(4):251–8. Epub 2018/03/28. doi: 10.1021/acs.chemrestox.7b00312 29582659.

27. Talhout R, Schulz T, Florek E, van Benthem J, Wester P, Opperhuizen A. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 2011;8(2):613–28. Epub 2011/05/11. doi: 10.3390/ijerph8020613 21556207; PubMed Central PMCID: PMC3084482.

28. Zhao J, Zhang Y, Sisler JD, Shaffer J, Leonard SS, Morris AM, et al. Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. J Hazard Mater. 2018;344:549–57. Epub 2017/11/06. doi: 10.1016/j.jhazmat.2017.10.057 29102637; PubMed Central PMCID: PMC5848214.

29. DeVito EE, Krishnan-Sarin S. E-cigarettes: Impact of E-Liquid Components and Device Characteristics on Nicotine Exposure. Curr Neuropharmacol. 2018;16(4):438–59. Epub 2017/10/20. doi: 10.2174/1570159X15666171016164430 29046158; PubMed Central PMCID: PMC6018193.

30. Gerharz J, Bendels MHK, Braun M, Klingelhofer D, Groneberg DA, Mueller R. Particulate matter emissions of different brands of mentholated cigarettes. J Air Waste Manag Assoc. 2018;68(6):608–15. Epub 2018/01/10. doi: 10.1080/10962247.2017.1417184 29315025.

31. Wang H, Li X, Guo J, Peng B, Cui H, Liu K, et al. Distribution of toxic chemicals in particles of various sizes from mainstream cigarette smoke. Inhal Toxicol. 2016;28(2):89–94. Epub 2016/02/13. doi: 10.3109/08958378.2016.1140851 26865272.

32. Li X, Kong H, Zhang X, Peng B, Nie C, Shen G, et al. Characterization of particle size distribution of mainstream cigarette smoke generated by smoking machine with an electrical low pressure impactor. J Environ Sci (China). 2014;26(4):827–33. Epub 2014/08/01. doi: 10.1016/S1001-0742(13)60472-6 25079413.

33. Ghosh A, Abdelwahab SH, Reeber SL, Reidel B, Marklew AJ, Garrison AJ, et al. Little Cigars are More Toxic than Cigarettes and Uniquely Change the Airway Gene and Protein Expression. Sci Rep. 2017;7:46239. Epub 2017/04/28. doi: 10.1038/srep46239 28447619; PubMed Central PMCID: PMC5406835.

34. Korfei M. The underestimated danger of E-cigarettes—also in the absence of nicotine. Respir Res. 2018;19(1):159. Epub 2018/08/31. doi: 10.1186/s12931-018-0870-4 30157845; PubMed Central PMCID: PMC6114529.

35. Kaur G, Muthumalage T, Rahman I. Mechanisms of toxicity and biomarkers of flavoring and flavor enhancing chemicals in emerging tobacco and non-tobacco products. Toxicol Lett. 2018;288:143–55. Epub 2018/02/27. doi: 10.1016/j.toxlet.2018.02.025 29481849; PubMed Central PMCID: PMC6549714.

36. Muthumalage T, Prinz M, Ansah KO, Gerloff J, Sundar IK, Rahman I. Inflammatory and Oxidative Responses Induced by Exposure to Commonly Used e-Cigarette Flavoring Chemicals and Flavored e-Liquids without Nicotine. Front Physiol. 2017;8:1130. Epub 2018/01/30. doi: 10.3389/fphys.2017.01130 29375399; PubMed Central PMCID: PMC5768608.

37. Klager S, Vallarino J, MacNaughton P, Christiani DC, Lu Q, Allen JG. Flavoring Chemicals and Aldehydes in E-Cigarette Emissions. Environ Sci Technol. 2017;51(18):10806–13. Epub 2017/08/18. doi: 10.1021/acs.est.7b02205 28817267.

38. Tierney PA, Karpinski CD, Brown JE, Luo W, Pankow JF. Flavour chemicals in electronic cigarette fluids. Tob Control. 2016;25(e1):e10–5. Epub 2015/04/17. doi: 10.1136/tobaccocontrol-2014-052175 25877377; PubMed Central PMCID: PMC4853541.

39. Gerloff J, Sundar IK, Freter R, Sekera ER, Friedman AE, Robinson R, et al. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts. Appl In Vitro Toxicol. 2017;3(1):28–40. Epub 2017/03/25. doi: 10.1089/aivt.2016.0030 28337465; PubMed Central PMCID: PMC5338075.


Článek vyšel v časopise

PLOS One


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Současné pohledy na riziko v parodontologii
nový kurz
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#