The efficacy of conditioned medium released by tonsil-derived mesenchymal stem cells in a chronic murine colitis model
Autoři:
Ko Eun Lee aff001; Sung-Ae Jung aff001; Yang-Hee Joo aff001; Eun Mi Song aff001; Chang Mo Moon aff001; Seong-Eun Kim aff001; Inho Jo aff002
Působiště autorů:
Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
aff001; Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225739
Souhrn
Tonsil-derived mesenchymal stem cells (TMSC) have characteristics of MSC and have many advantages. In our previous studies, intraperitoneal (IP) injection of TMSC in acute and chronic colitis mouse models improved the disease activity index, colon length, and the expression levels of proinflammatory cytokines. However, TMSC were not observed to migrate to the inflammation site in the intestine. The aim of this study was to verify the therapeutic effect of conditioned medium (CM) released by TMSC (TMSC-CM) in a mouse model of dextran sulfate sodium (DSS)-induced chronic colitis. TMSC-CM was used after seeding 5×105 cells onto a 100 mm dish and culturing for 5–7 days. TMSC-CM was concentrated (TMSC-CM-conc) by three times using a 100 kDa cut-off centrifugal filter. Seven-week-old C57BL/6 mice were randomly assigned to the following 5 groups: 1) normal, 2) colitis, 3) TMSC, 4) TMSC-CM, and 5) TMSC-CM-conc. Chronic colitis was induced by continuous oral administration of 1.5% dextran sulfate sodium (DSS) for 5 days, followed by 5 additional days of tap water feeding. This cycle was repeated two more times (total 30 days). Phosphate buffered saline (in the colitis group), TMSC, TMSC-CM, and TMSC-CM-conc were injected via IP route 4, 4, 12, and 4 times, respectively. Reduction of disease activity index, weight gain, recovery of colon length, and decreased in the expression level of the proinflammatory cytokines, interleukin (IL)-1β, IL-6, and IL-17 were observed at day 30 in the treatment groups, compared to control. However, histological colitis scoring and the expression level of tumor necrosis factor α and IL-10 did not differ significantly between each group. TMSC-CM showed an equivalent effect to TMSC related to the improvement of inflammation in the chronic colitis mouse model. The data obtained support the use of TMSC-CM to treat inflammatory bowel disease without any cell transplantation.
Klíčová slova:
Colitis – Colon – Cytokines – Histology – Inflammatory bowel disease – Intraperitoneal injections – Mesenchymal stem cells – Mouse models
Zdroje
1. Yang SK, Yun S, Kim JH, Park JY, Kim HY, Kim YH, et al. Epidemiology of inflammatory bowel disease in the Songpa-Kangdong district, Seoul, Korea, 1986–2005: a KASID study. Inflamm Bowel Dis. 2008;14(4):542–9. Epub 2007/10/18. doi: 10.1002/ibd.20310 17941073.
2. Loftus EV Jr., Sandborn WJ. Epidemiology of inflammatory bowel disease. Gastroenterol Clin North Am. 2002;31(1):1–20. Epub 2002/07/19. doi: 10.1016/s0889-8553(01)00002-4 12122726.
3. Kim HJ, Hann HJ, Hong SN, Kim KH, Ahn IM, Song JY, et al. Incidence and natural course of inflammatory bowel disease in Korea, 2006–2012: a nationwide population-based study. Inflamm Bowel Dis. 2015;21(3):623–30. Epub 2015/02/04. doi: 10.1097/MIB.0000000000000313 25647154.
4. Nagaishi K, Arimura Y, Fujimiya M. Stem cell therapy for inflammatory bowel disease. J Gastroenterol. 2015;50(3):280–6. Epub 2015/01/27. doi: 10.1007/s00535-015-1040-9 25618180.
5. Nagahori M NY, Watanabe M. Pathogenesis of Inflammatory Bowel Diseases. Intest Res. 2010;8(1):9–17.
6. Ferrante M, Vermeire S, Fidder H, Schnitzler F, Noman M, Van Assche G, et al. Long-term outcome after infliximab for refractory ulcerative colitis. J Crohns Colitis. 2008;2(3):219–25. Epub 2008/05/16. doi: 10.1016/j.crohns.2008.03.004 21172214.
7. Ben-Horin S, Kopylov U, Chowers Y. Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmun Rev. 2014;13(1):24–30. Epub 2013/06/25. doi: 10.1016/j.autrev.2013.06.002 23792214.
8. Duran NE, Hommes DW. Stem cell-based therapies in inflammatory bowel disease: promises and pitfalls. Therap Adv Gastroenterol. 2016;9(4):533–47. Epub 2016/07/02. doi: 10.1177/1756283X16642190 27366222; PubMed Central PMCID: PMC4913333.
9. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49. Epub 2007/07/28. doi: 10.1634/stemcells.2007-0197 17656645.
10. Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5–14. Epub 2011/03/15. doi: 10.3727/096368910X 21396235.
11. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(Pt 11):2204–13. Epub 2006/05/11. doi: 10.1242/jcs.02932 16684817.
12. Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH. Mesenchymal Stem Cells on Horizon: A New Arsenal of Therapeutic Agents. Stem Cell Rev. 2018. Epub 2018/04/25. doi: 10.1007/s12015-018-9817-x 29687338.
13. Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 2005;11(7–8):1198–211. Epub 2005/09/08. doi: 10.1089/ten.2005.11.1198 16144456.
14. Chen QQ, Yan L, Wang CZ, Wang WH, Shi H, Su BB, et al. Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses. World J Gastroenterol. 2013;19(29):4702–17. Epub 2013/08/08. doi: 10.3748/wjg.v19.i29.4702 23922467; PubMed Central PMCID: PMC3732842.
15. Kim HS, Shin TH, Lee BC, Yu KR, Seo Y, Lee S, et al. Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2. Gastroenterology. 2013;145(6):1392–403 e1-8. Epub 2013/08/27. doi: 10.1053/j.gastro.2013.08.033 23973922.
16. Cho KA, Kim JY, Kim HS, Ryu KH, Woo SY. Tonsil-derived mesenchymal progenitor cells acquire a follicular dendritic cell phenotype under cytokine stimulation. Cytokine. 2012;59(2):211–4. Epub 2012/05/15. doi: 10.1016/j.cyto.2012.04.016 22578801.
17. Janjanin S, Djouad F, Shanti RM, Baksh D, Gollapudi K, Prgomet D, et al. Human palatine tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells. Arthritis Res Ther. 2008;10(4):R83. Epub 2008/07/30. doi: 10.1186/ar2459 18662393; PubMed Central PMCID: PMC2575631.
18. Ryu KH, Cho KA, Park HS, Kim JY, Woo SY, Jo I, et al. Tonsil-derived mesenchymal stromal cells: evaluation of biologic, immunologic and genetic factors for successful banking. Cytotherapy. 2012;14(10):1193–202. Epub 2012/08/21. doi: 10.3109/14653249.2012.706708 22900958.
19. Song EM, Jung SA, Lee KE, Jang JY, Lee KH, Tae CH, et al. The Therapeutic Efficacy of Tonsil-derived Mesenchymal Stem Cells in Dextran Sulfate Sodium-induced Acute Murine Colitis Model. Korean J Gastroenterol. 2017;69(2):119–28. Epub 2017/02/28. doi: 10.4166/kjg.2017.69.2.119 28239080.
20. Yu Y, Song EM, Lee KE, Joo YH, Kim SE, Moon CM, et al. Therapeutic potential of tonsil-derived mesenchymal stem cells in dextran sulfate sodium-induced experimental murine colitis. PLoS One. 2017;12(8):e0183141. Epub 2017/08/31. doi: 10.1371/journal.pone.0183141 28854223; PubMed Central PMCID: PMC5576698.
21. Stevceva L, Pavli P, Husband A, Ramsay A, Doe WF. Dextran sulphate sodium-induced colitis is ameliorated in interleukin 4 deficient mice. Genes Immun. 2001;2(6):309–16. Epub 2001/10/19. doi: 10.1038/sj.gene.6363782 11607786.
22. Kihara N, de la Fuente SG, Fujino K, Takahashi T, Pappas TN, Mantyh CR. Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut. 2003;52(5):713–9. Epub 2003/04/15. doi: 10.1136/gut.52.5.713 12692058; PubMed Central PMCID: PMC1773638.
23. Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136(3):978–89. Epub 2009/01/13. doi: 10.1053/j.gastro.2008.11.041 19135996.
24. Sala E, Genua M, Petti L, Anselmo A, Arena V, Cibella J, et al. Mesenchymal Stem Cells Reduce Colitis in Mice via Release of TSG6, Independently of Their Localization to the Intestine. Gastroenterology. 2015;149(1):163–76 e20. Epub 2015/03/21. doi: 10.1053/j.gastro.2015.03.013 25790743.
25. Robinson AM, Sakkal S, Park A, Jovanovska V, Payne N, Carbone SE, et al. Mesenchymal stem cells and conditioned medium avert enteric neuropathy and colon dysfunction in guinea pig TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2014;307(11):G1115–29. Epub 2014/10/11. doi: 10.1152/ajpgi.00174.2014 25301186.
26. Miyamoto S, Ohnishi S, Onishi R, Tsuchiya I, Hosono H, Katsurada T, et al. Therapeutic effects of human amnion-derived mesenchymal stem cell transplantation and conditioned medium enema in rats with trinitrobenzene sulfonic acid-induced colitis. Am J Transl Res. 2017;9(3):940–52. Epub 2017/04/08. 28386323; PubMed Central PMCID: PMC5375988.
27. Xiang MX, He AN, Wang JA, Gui C. Protective paracrine effect of mesenchymal stem cells on cardiomyocytes. J Zhejiang Univ Sci B. 2009;10(8):619–24. Epub 2009/08/04. doi: 10.1631/jzus.B0920153 19650201; PubMed Central PMCID: PMC2722704.
28. Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A. 2012;18(13–14):1479–89. Epub 2012/03/27. doi: 10.1089/ten.TEA.2011.0325 22443121; PubMed Central PMCID: PMC3397118.
29. Gong J, Meng HB, Hua J, Song ZS, He ZG, Zhou B, et al. The SDF-1/CXCR4 axis regulates migration of transplanted bone marrow mesenchymal stem cells towards the pancreas in rats with acute pancreatitis. Mol Med Rep. 2014;9(5):1575–82. Epub 2014/03/15. doi: 10.3892/mmr.2014.2053 24626964; PubMed Central PMCID: PMC4020475.
30. Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells. 2017;35(4):851–8. Epub 2017/03/16. doi: 10.1002/stem.2575 28294454.
31. Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Mol Ther. 2015;23(5):812–23. Epub 2015/04/15. doi: 10.1038/mt.2015.44 25868399; PubMed Central PMCID: PMC4427881.
32. Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci. 2014;8:377. Epub 2014/11/27. doi: 10.3389/fncel.2014.00377 25426026; PubMed Central PMCID: PMC4226157.
33. Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31(12):2737–46. Epub 2013/05/01. doi: 10.1002/stem.1409 23630198; PubMed Central PMCID: PMC3788061.
34. Li Y, Liu Z, Xin H, Chopp M. The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia. 2014;62(1):1–16. Epub 2013/11/26. doi: 10.1002/glia.22585 24272702; PubMed Central PMCID: PMC3947888.
35. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 2014;92(4):387–97. Epub 2013/12/18. doi: 10.1007/s00109-013-1110-5 24337504.
36. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126(22):2601–11. Epub 2012/11/02. doi: 10.1161/CIRCULATIONAHA.112.114173 23114789; PubMed Central PMCID: PMC3979353.
37. Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, et al. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells. 2015;33(7):2158–68. Epub 2014/06/26. doi: 10.1002/stem.1771 24964196.
38. Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, et al. Effects of Mesenchymal Stem Cell-Derived Exosomes on Experimental Autoimmune Uveitis. Sci Rep. 2017;7(1):4323. Epub 2017/07/01. doi: 10.1038/s41598-017-04559-y 28659587; PubMed Central PMCID: PMC5489510.
39. De Palma G, Sallustio F, Schena FP. Clinical Application of Human Urinary Extracellular Vesicles in Kidney and Urologic Diseases. Int J Mol Sci. 2016;17(7). Epub 2016/07/05. doi: 10.3390/ijms17071043 27376269; PubMed Central PMCID: PMC4964419.
40. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 2001;21(1):15–23. Epub 2001/02/17. doi: 10.1002/jat.727 11180276.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy