Molecular identification of Ehrlichia, Anaplasma, Babesia and Theileria in African elephants and their ticks
Autoři:
Edward King’ori aff001; Vincent Obanda aff002; Patrick I. Chiyo aff003; Ramon C. Soriguer aff004; Patrocinio Morrondo aff001; Samer Angelone aff004
Působiště autorů:
Department of Animal Science, University of Santiago de Compostela, Santiago, Spain
aff001; Veterinary Department, Kenya Wildlife Service, Nairobi, Kenya
aff002; Institute of Primates Research, National Museums of Kenya, Nairobi, Kenya
aff003; Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
aff004; Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland
aff005
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226083
Souhrn
Although historical records indicate the presence of Ehrlichia and Babesia in African elephants, not much is known about their prevalence and diversity in elephants and their ticks, Amblyomma thollonii and Rhipicephalus humeralis. We amplified and sequenced the hypervariable V4 region of the 18S rRNA gene of Babesia and Theileria and the heat shock protein gene (groEL) of Ehrlichia/Anaplasma in DNA extracted from elephant blood (n = 104) and from elephant ticks (n = 52). Our results showed that the African elephants were infected with a novel Babesia spp. while A. thollonii was infected with Theileria bicornis and Theileria cf. velifera. This is the first record of T. bicornis; a protozoan that is linked to fatal infection in rhinoceros in a tick. Elephants and their ticks were all infected with a species of Ehrlichia like that identified in Japanese deer. The prevalence of Babesia spp., Theileria spp. and Ehrlichia spp. in ticks was higher than that of their elephant hosts. About 13.5% of elephants were positive for Theileria or Babesia while 51% of A. thollonii ticks and 27% of R. humeralis ticks were positive for Theileria or Babesia. Moreover, 5.8% of elephants were positive for Ehrlichia or Anaplasma compared to 19.5% in A. thollonii and 18% in R. humeralis. There was no association between the positive result in ticks and that of their elephant hosts for either Babesia spp., Theileria spp. or Ehrlichia spp. Our study reveals that the African elephants are naturally infected with Babesia spp and Ehrlichia spp and opens up an opportunity for further studies to determine the role of elephant as reservoirs of tick-borne pathogens, and to investigate their potential in spreading these pathogens as they range extensively. The presence of T. bicornis in A. thollonii also suggests a need for experiments to confirm its vector competence.
Klíčová slova:
Babesia – Elephants – Haplotypes – Polymerase chain reaction – Ticks – Theileria – Ehrlichia – Anaplasma
Zdroje
1. Munson L, Terio KA, Kock R, Mlengeya T, Roelke ME, Dubovi E, et al. Climate extremes promote fatal co-Infections during canine distemper Epidemics in African lions. PLoS ONE. 2008;3(6):e2545. doi: 10.1371/journal.pone.0002545 18575601
2. Nijhof AM, Pillay V, Steyl J, Prozesky L, Stoltsz WH, Lawrence JA, et al. Molecular characterization of Theileria species associated with mortality in four species of African antelopes. Journal of Clinical Microbiology. 2005;43(12):5907–11. doi: 10.1128/JCM.43.12.5907-5911.2005 16333074
3. Höfle U, Vicente J, Nagore D, Hurtado A, Pena A, De La Fuente J, et al. The risks of translocating wildlife: pathogenic infection with Theileria sp. and Elaeophora elaphi in an imported red deer. Veterinary Parasitology. 2004;126(4):387–95. doi: 10.1016/j.vetpar.2004.07.026 15567043
4. Wilson DE, Hirst SM. Ecology and factors limiting roan and sable antelope populations in South Africa. Wildlife Monographs. 1977:3–111.
5. Nijhof AM, Penzhorn BL, Lynen G, Mollel JO, Morkel P, Bekker CPJ, et al. Babesia bicornis sp. nov. and Theileria bicornis sp. nov.: Tick-Borne Parasites Associated with Mortality in the Black Rhinoceros (Diceros bicornis). Journal of Clinical Microbiology. 2003;41(5):2249–54. doi: 10.1128/JCM.41.5.2249-2254.2003 12734294
6. Wilson D, Bartsch R, Bigalke R, Thomas SE. Observations on mortality rates and disease in roan and sable antelope on nature reserves in the Transvaal. Journal of the South African Wildlife Management Association. 1974;4(3):203–6.
7. Norval R, Colborne J, Tannock J, Mackenzie P. The life cycle of Amblyomma tholloni Neumann, 1899 (Acarina: Ixodidae) under laboratory conditions. Veterinary Parasitology. 1980;7(3):255–63.
8. Sikes SK. Natural history of the African elephant. London, UK: The Trinity Press; 1971.
9. Dipeolu OO. The occurrence of ticks on a baby African elephant in Nigeria. African Journal of Ecology. 1976;14(3):227.
10. Horak Ivan G., Williams Roy, Gallivan G. James, Spickett Arthur M., J. Durr Bezuidenhout, Estrada-Pena A. The Ixodid Ticks (Acari:Ixodidae) of Southern Africa. Cham, Switzerland: Springer; 2018.
11. Hoogstral H. African Ixodoidea. 1. Ticks of the Sudan. Research Report NM 005 05029 07: Department of the Navy, Bureau of Medicine and Surgery Washington, DC; 1956.
12. Norval R. The ticks of Zimbabwe. VII. The genus Amblyomma. Zimbabwe Veterinary Journal. 1983;14(1/4):3–18.
13. Uilenberg G, Estrada-Peña A, Thal J. Ticks of the Central African Republic. Experimental and Applied Acarology. 2013;60(1):1–40. doi: 10.1007/s10493-012-9605-2 22996417
14. Mackenzie P, Norval R. The transmission of Cowdria ruminantium by Amblyomma tholloni. Veterinary Parasitology. 1980;7(3):265–8.
15. Gomes A. The tick vectors of cowdriosis in Angola. Revue d’élevage et de médecine vétérinaire des pays tropicaux. 1993;46(1–2):237–43. 8134639
16. Horak IG, Boshoff CR, Cooper DV, Foggin CM, Govender D, Harrison A, et al. Parasites of domestic and wild animals in South Africa. XLIX. Ticks (Acari: Ixodidae) infesting white and black rhinoceroses in southern Africa. Onderstepoort Journal of Veterinary Research. 2017;84(1):1–11.
17. Walker JB, Keirans JE, Horak IG. The genus Rhipicephalus (Acari, Ixodidae): a guide to the brown ticks of the world: Cambridge University Press; 2005.
18. Brocklesby D, Campbell H. A Babesia of the African elephant. African Journal of Ecology. 1963;1(1):119.
19. Matsumoto K, Parola P, Rolain J-M, Jeffery K, Raoult D. Detection of" Rickettsia sp. strain Uilenbergi" and" Rickettsia sp. strain Davousti" in Amblyomma tholloni ticks from elephants in Africa. BMC microbiology. 2007;7(1):74.
20. Walker JB, Olwage A. The tick vectors of Cowdria ruminantium (Ixodoidea, Ixodidae, genus Amblyomma) and their distribution. Onderstepoort Journal of Veterinary Research. 1987;54:353–79. 3329325
21. Green DS, Roloff GJ, Heath BR, Holekamp KE. Temporal dynamics of the reponses by African mammals to prescribed fire. The Journal of Wildlife Management. 2015;79(2):235–42. doi: 10.1002/jwmg.827
22. Agnew ADQ. Observations on the changing vegetation of Tsavo National Park East. East African Wildlife Journal. 1968;6:75–80.
23. Gadd ME. Conservation outside of parks: attitudes of local people in Laikipia, Kenya. Environmental Conservation. 2005;32(1):50–63. doi: 10.1017/s0376892905001918
24. Mwiu S, Kiambi S, Bett A, Mukeka J, Nyaligu M, Ikime T, et al. Aerial Total Count of Elephants, Buffalo and Giraffe in the Mara ecosystem (May 2017). 2017.
25. Muteti D, J., Mwita, M., Ndambuki, S., Mareale, Kenana, L., Ngene, S.M. & Omondi, P.O. Amboseli, Kilimanjaro, Magadi, Natron (AWKMAN) cross border landscape total aerial count June 2018. 2018.
26. Ngene S, Lala F, Nzisa M, Kimitei K, Mukeka J, Kiambi S, et al. Aerial total count of Elephants, Buffalo & Giraffe in the Tsavo- Mkomazi ecosystem (February 2017). 2017.
27. Ngene S, Ihwagi F, Omengo F, Bundotich G, Ndambuki S, Davidson Z, et al. Aerial total count of Elephants, Buffalo, Giraffe & Grevy’s zebra in Laikipia-Samburu-Meru-Marsabit ecosystem (November 2017). 2017.
28. Thouless CR, Sakwa J. Shocking Elephants: fences and crop raiders in Laikipia District, Kenya. Biological Conservation. 1995;72:99–107.
29. Walker JB. Rhipicephalus humeralis Rondelli 1926. Parasitology. 1957;47(1–2):145–52. Epub 2009/04/06. doi: 10.1017/s0031182000021843 13441311
30. Hawkins E, Kock R, McKeever D, Gakuya F, Musyoki C, Chege SM, et al. Prevalence of Theileria equi and Babesia caballi as well as the identification of associated ticks in sympatric Grevy’s zebras (Equus grevyi) and donkeys (Equus africanus asinus) in northern Kenya. Journal of Wildlife Diseases. 2015;51(1):137–47. doi: 10.7589/2013-11-316 25380362
31. Park HS, Lee JH, Jeong EJ, Park TK, Kim TY, Chae JS, et al. Differentiation of Anaplasmataceae through partial groEL gene analysis. Microbiology and immunology. 2005;49(7):655–62. doi: 10.1111/j.1348-0421.2005.tb03644.x 16034209
32. Stucky BJ. SeqTrace: a graphical tool for rapidly processing DNA sequencing chromatograms. Journal of biomolecular techniques: JBT. 2012;23(3):90. doi: 10.7171/jbt.12-2303-004 22942788
33. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;32(5):1792–7. doi: 10.1093/nar/gkh340 15034147
34. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2. doi: 10.1093/bioinformatics/btp187 19346325
35. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Research. 2009;37(Database issue):D26–31. Epub 2008/10/23. doi: 10.1093/nar/gkn723 18940867.
36. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 1990;215(3):403–10. doi: 10.1016/S0022-2836(05)80360-2 2231712
37. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution. 2013;30(12):2725–9. doi: 10.1093/molbev/mst197 24132122
38. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution. 1980;16(2):111–20. doi: 10.1007/bf01731581 7463489
39. Kimura M. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences. 1981;78(1):454–8.
40. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985:783–91. doi: 10.1111/j.1558-5646.1985.tb00420.x 28561359
41. R-Core-Team. R: A language and environment for statistical computing (version 3.6.0). 2019.
42. Smith RM, Bhoora RV, Kotze A, Grobler JP, Dalton DL. Translocation a potential corridor for equine piroplasms in Cape mountain zebra (Equus zebra zebra). Int J Parasitol-Parasit Wildl. 2019;9:130–3. doi: 10.1016/j.ijppaw.2019.04.010 31080728
43. King’ori EM, Obanda V, Ndambiri EM, Runo SM, Chiyo PI. Adding injury to infection: The relationship between injury status and genetic diversity of Theileria infecting plains zebra, Equus quagga. Infection, Genetics and Evolution. 2018.
44. Burroughs REJ, Penzhorn BL, Wiesel I, Barker N, Vorster I, Oosthuizen MC. Piroplasms in brown hyaenas (Parahyaena brunnea) and spotted hyaenas (Crocuta crocuta) in Namibia and South Africa are closely related to Babesia lengau. Parasitol Res. 2017;116:685+. doi: 10.1007/s00436-016-5334-5 27913878
45. Oura CAL, Asiimwe BB, Weir W, Lubega GW, Tait A. Population genetic analysis and sub-structuring of Theileria parva in Uganda. Molecular and Biochemical Parasitology. 2005;140(2):229–39. http://dx.doi.org/10.1016/j.molbiopara.2004.12.015 15760662
46. Zimmermann DE. The occurrence of piroplasms in various South African black rhinoceros (Diceros bicornis) populations: University of Pretoria; 2009.
47. Otiende MY, Kivata MW, Makumi JN, Mutinda MN, Okun D, Kariuki L, et al. Epidemiology of Theileria bicornis among black and white rhinoceros metapopulation in Kenya. BMC Veterinary Research. 2015;11(1):4.
48. Govender D, Oosthuisen M, Penzhorn BL. Piroplasm parasites of white rhinoceroses (Ceratotherium simum) in the Kruger National Park, and their relation to anaemia. Journal of the South African Veterinary Association. 2011;82(1):36–40. 21826836
49. Eygelaar D, Jori F, Mokopasetso M, Sibeko KP, Collins NE, Vorster I, et al. Tick-borne haemoparasites in African buffalo (Syncerus caffer) from two wildlife areas in Northern Botswana. Parasites & Vectors. 2015;8:26-. doi: 10.1186/s13071-014-0627-y 25589064.
50. Debeila EM. Occurrence of Anaplasma and Ehrlichia species in African buffalo (Syncerus caffer) in Kruger National Park and Hluhluwe-iMfolozi Park in South Africa University of Pretoria; 2012.
51. Kumsa B, Signorini M, Teshale S, Tessarin C, Duguma R, Ayana D, et al. Molecular detection of piroplasms in ixodid ticks infesting cattle and sheep in western Oromia, Ethiopia. Tropical animal health and production. 2014;46(1):27–31. doi: 10.1007/s11250-013-0442-z 23846769
52. Swai E, Karimuribo E, Rugaimukamu E, Kambarage D. Factors influencing the distribution of questing ticks and the prevalence stimation of T. parva infection in brown ear ticks in the Tanga region, Tanzania. Journal of Vector Ecology. 2006;31(2):224–9. doi: 10.3376/1081-1710(2006)31[224:fitdoq]2.0.co;2 17249338
53. Teshale S, Geysen D, Ameni G, Asfaw Y, Berkvens D. Improved molecular detection of Ehrlichia and Anaplasma species applied to Amblyomma ticks collected from cattle and sheep in Ethiopia. Ticks and Tick-borne Diseases. 2015;6(1):1–7. https://doi.org/10.1016/j.ttbdis.2014.04.023 25438799
54. Watt D, Kiara H, Sparagano O. A PCR‐based Field Evaluation of Theileria Infections in Cattle and Ticks in Kenya. Annals of the New York Academy of Sciences. 1998;849(1):69–77.
55. Fowler ME, Mikota SK. Biology, medicine, and surgery of elephants: Wiley Online Library; 2006.
56. Knapp S, Krecek R, Horak I, Penzhorn B. Helminths and arthropods of black and white rhinoceroses in southern Africa. Journal of Wildlife Diseases. 1997;33(3):492–502. doi: 10.7589/0090-3558-33.3.492 9249695
57. Mans BJ, Pienaar R, Latif AA. A review of Theileria diagnostics and epidemiology. International Journal for Parasitology: Parasites and Wildlife. 2015;4(1):104–18. doi: 10.1016/j.ijppaw.2014.12.006 25830110
58. Yusufmia SBAS, Collins NE, Nkuna R, Troskie M, Van den Bossche P, Penzhorna BL. Occurrence of Theileria parva and other haemoprotozoa in cattle at the edge of Hluhluwe-iMfolozi Park, KwaZulu-Natal, South Africa. Journal of the South African Veterinary Association. 2010;81(1):45–9. doi: 10.4102/jsava.v81i1.95 20649154
59. Mwamuye MM, Kariuki E, Omondi D, Kabii J, Odongo D, Masiga D, et al. Novel Rickettsia and emergent tick-borne pathogens: A molecular survey of ticks and tick-borne pathogens in Shimba Hills National Reserve, Kenya. Ticks and tick-borne diseases. 2017;8(2):208–18. doi: 10.1016/j.ttbdis.2016.09.002 28011185
60. Kariuki EK, Penzhorn BL, Horak IG. Ticks (Acari: Ixodidae) infesting cattle and African buffaloes in the Tsavo conservation area, Kenya: research communication. Onderstepoort Journal of Veterinary Research. 2012;79(1):1–4.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy