Effects of different fatigue locations on upper body kinematics and inter-joint coordination in a repetitive pointing task
Autoři:
Chen Yang aff001; Samuel Leitkam aff001; Julie N. Côté aff001
Působiště autorů:
Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
aff001; Occupational Biomechanics and Ergonomics Laboratory, Michael Feil and Ted Oberfeld/CRIR Research Centre, Jewish Rehabilitation Hospital, Laval, Quebec, Canada
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227247
Souhrn
Studies have shown that muscle fatigue can lead to posture, joint angle, inter-joint coordination and variability alterations. However, the three-dimensional kinematic effects of localized muscular fatigue on a multijoint movement remain unclear. Healthy young adults (N = 17, 10 females) performed a standing repetitive pointing task when they were non-fatigued, and after localized muscle fatigue was induced at the elbow, the shoulder, and the trunk using isometric protocols performed until exhaustion. Joint angles and angular standard deviation (SD) of trunk, shoulder and elbow, and continuous relative phase (CRP) and CRP SD between trunk and shoulder, and shoulder and elbow were computed and compared between fatigue conditions. Results showed that trunk lateral flexion SD increased after fatigue of the elbow (0.1°, p = 0.04), shoulder (0.1°, p = 0.04) and trunk (0.1°, p<0.01). However, fatigue at different muscles brought different kinematic changes. Shoulder fatigue induced the greatest overall changes, with angular changes at all three joints. Trunk fatigue increased the shoulder horizontal abduction SD, elbow flexion SD and trunk-shoulder CRP. Elbow fatigue induced angular changes at trunk, shoulder and elbow, but did not affect CRP or CRP SD. This study highlights the crucial role of trunk variability in compensating for localized muscle fatigue during a repetitive upper limb task performed while standing.
Klíčová slova:
Body limbs – Fatigue – Kinematics – Material fatigue – Musculoskeletal system – Shoulders – Skeletal joints
Zdroje
1. Mayer J, Kraus T, Ochsmann E. Longitudinal evidence for the association between work-related physical exposures and neck and/or shoulder complaints: a systematic review. International archives of occupational and environmental health. 2012;85(6):587–603. doi: 10.1007/s00420-011-0701-0 22038085
2. Van Rijn RM, Huisstede BM, Koes BW, Burdorf A. Associations between work-related factors and specific disorders of the shoulder—a systematic review of the literature. Scandinavian journal of work, environment & health. 2010:189–201.
3. Statistics Canada CoC. Canadian Community Health Survey (2015–2016). Ottawa, Canada2016.
4. Sommerich CM, McGlothlin JD, Marras WS. Occupational risk factors associated with soft tissue disorders of the shoulder: a review of recent investigations in the literature. Ergonomics. 1993;36(6):697–717. doi: 10.1080/00140139308967931 8513776
5. De Luca CJ. Myoelectrical manifestations of localized muscular fatigue in humans. Critical reviews in biomedical engineering. 1984;11(4):251. 6391814
6. Beelen A, Sargeant A. Effect of fatigue on maximal power output at different contraction velocities in humans. Journal of Applied Physiology. 1991;71(6):2332–7. doi: 10.1152/jappl.1991.71.6.2332 1778931
7. Bigland-Ritchie B, Johansson R, Lippold OC, Woods JJ. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. J Neurophysiol. 1983;50(1):313–24. doi: 10.1152/jn.1983.50.1.313 6308182
8. Vollestad NK. Measurement of human muscle fatigue. J Neurosci Methods. 1997;74(2):219–27. doi: 10.1016/s0165-0270(97)02251-6 9219890
9. Fuller J, Lomond KV, Fung J, Côté JN. Posture-movement changes following repetitive motion-induced shoulder muscle fatigue. Journal of Electromyography and Kinesiology. 2009;19(6):1043–52. doi: 10.1016/j.jelekin.2008.10.009 19091598
10. Lomond KV, Côté JN. Differences in posture–movement changes induced by repetitive arm motion in healthy and shoulder-injured individuals. Clinical Biomechanics. 2011;26(2):123–9. doi: 10.1016/j.clinbiomech.2010.09.012 20950902
11. Davidson BS, Madigan ML, Nussbaum MA. Effects of lumbar extensor fatigue and fatigue rate on postural sway. European journal of applied physiology. 2004;93(1–2):183–9. doi: 10.1007/s00421-004-1195-1 15549370
12. Bernstein NA. The co-ordination and regulation of movements. 1967.
13. Côté JN, Mathieu PA, Levin MF, Feldman AG. Movement reorganization to compensate for fatigue during sawing. Experimental brain research. 2002;146(3):394–8. doi: 10.1007/s00221-002-1186-6 12232697
14. Forestier N, Nougier V. The effects of muscular fatigue on the coordination of a multijoint movement in human. Neuroscience letters. 1998;252(3):187–90. doi: 10.1016/s0304-3940(98)00584-9 9739992
15. Gates DH, Dingwell JB. The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements. Experimental Brain Research. 2008;187(4):573–85. doi: 10.1007/s00221-008-1326-8 18327575
16. Hamill J, Palmer C, Van Emmerik RE. Coordinative variability and overuse injury. BMC Sports Science, Medicine and Rehabilitation. 2012;4(1):45.
17. Heiderscheit BC, Hamill J, van Emmerik RE. Variability of stride characteristics and joint coordination among individuals with unilateral patellofemoral pain. Journal of applied biomechanics. 2002;18(2):110–21.
18. Yang C, Bouffard J, Srinivasan D, Ghayourmanesh S, Cantú H, Begon M, et al. Changes in movement variability and task performance during a fatiguing repetitive pointing task. Journal of Biomechanics. 2018;76:212–9. doi: 10.1016/j.jbiomech.2018.05.025 29908654
19. Cowley JC, Gates DH. Proximal and distal muscle fatigue differentially affect movement coordination. PloS One. 2017;12(2):e0172835. doi: 10.1371/journal.pone.0172835 28235005
20. Huffenus A-F, Amarantini D, Forestier N. Effects of distal and proximal arm muscles fatigue on multi-joint movement organization. Experimental brain research. 2006;170(4):438–47. doi: 10.1007/s00221-005-0227-3 16369793
21. Dounskaia N. The internal model and the leading joint hypothesis: implications for control of multi-joint movements. Experimental Brain Research. 2005;166(1):1–16. doi: 10.1007/s00221-005-2339-1 16132966
22. Borg GA. Psychophysical bases of perceived exertion. Med sci sports exerc. 1982;14(5):377–81. 7154893
23. Emery K, De Serres SJ, McMillan A, Côté JN. The effects of a Pilates training program on arm–trunk posture and movement. Clinical Biomechanics. 2010;25(2):124–30. doi: 10.1016/j.clinbiomech.2009.10.003 19879677
24. Vicon®. Plug-in-Gait modelling instructions. Vicon® Manual, Vicon®612 Motion Systems Oxford Metrics Ltd, Oxford, UK. 2002.
25. Gates DH, Walters LS, Cowley J, Wilken JM, Resnik L. Range of motion requirements for upper-limb activities of daily living. American Journal of Occupational Therapy. 2016;70(1):7001350010p1-p10.
26. Wu G, Van der Helm FC, Veeger HD, Makhsous M, Van Roy P, Anglin C, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. Journal of biomechanics. 2005;38(5):981–92. doi: 10.1016/j.jbiomech.2004.05.042 15844264
27. Hamill J, van Emmerik RE, Heiderscheit BC, Li L. A dynamical systems approach to lower extremity running injuries. Clinical biomechanics. 1999;14(5):297–308. doi: 10.1016/s0268-0033(98)90092-4 10521606
28. Ma Y, Mazumdar M, Memtsoudis SG. Beyond Repeated measures ANOVA: advanced statistical methods for the analysis of longitudinal data in anesthesia research. Regional anesthesia and pain medicine. 2012;37(1):99. doi: 10.1097/AAP.0b013e31823ebc74 22189576
29. Naseri P, Majd HA, Kariman N, Sourtiji A. Comparison of generalized estimating equations (GEE), mixed effects models (MEM) and repeated measures ANOVA in analysis of menorrhagia data. Journal of Paramedical Sciences. 2016;7(1):32–40.
30. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological). 1995;57(1):289–300.
31. Fuller J, Fung J, Côté JN. Time-dependent adaptations to posture and movement characteristics during the development of repetitive reaching induced fatigue. Experimental brain research. 2011;211(1):133–43. doi: 10.1007/s00221-011-2661-8 21484395
32. Selen L, Beek P, van Dieën J. Fatigue-induced changes of impedance and performance in target tracking. Experimental brain research. 2007;181(1):99–108. doi: 10.1007/s00221-007-0909-0 17342476
33. Srinivasan D, Mathiassen SE. Motor variability in occupational health and performance. Clinical biomechanics. 2012;27(10):979–93. doi: 10.1016/j.clinbiomech.2012.08.007 22954427
34. Cowley JC, Gates DH. Inter-joint coordination changes during and after muscle fatigue. Human Movement Science. 2017;56:109–18. doi: 10.1016/j.humov.2017.10.015 29121490
35. Fuller JR, Fung J, Côté JN. Posture-movement responses to stance perturbations and upper limb fatigue during a repetitive pointing task. Human movement science. 2013;32(4):618–32. doi: 10.1016/j.humov.2013.03.002 24054899
36. Côté JN, Raymond D, Mathieu PA, Feldman AG, Levin MF. Differences in multi-joint kinematic patterns of repetitive hammering in healthy, fatigued and shoulder-injured individuals. Clinical Biomechanics. 2005;20(6):581–90. doi: 10.1016/j.clinbiomech.2005.02.012 15927734
37. Bernstein’s N. The co-ordination and regulation of movements. Oxford: Pergamon Press Ltd; 1967.
38. Côté JN, Feldman AG, Mathieu PA, Levin MF. Effects of fatigue on intermuscular coordination during repetitive hammering. Motor control. 2008;12(2):79–92. doi: 10.1123/mcj.12.2.79 18483444
39. Dounskaia N, Swinnen S, Walter C, Spaepen A, Verschueren S. Hierarchical control of different elbow-wrist coordination patterns. Experimental Brain Research. 1998;121(3):239–54. doi: 10.1007/s002210050457 9746130
40. Bouffard J, Yang C, Begon M, Côté J. Sex differences in kinematic adaptations to muscle fatigue induced by repetitive upper limb movements. Biology of sex differences. 2018;9(1):17. doi: 10.1186/s13293-018-0175-9 29673397
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy