Composition and structure of the marine benthic community in Terra Nova Bay, Antarctica: Responses of the benthic assemblage to disturbances
Autoři:
Yun Hee Kang aff001; Sanghee Kim aff002; Sun Kyeong Choi aff003; Kyeonglim Moon aff003; Han-Gu Choi aff002; Young Wook Ko aff002; Ian Hawes aff004; Sa-Heung Kim aff005; Ji Hee Kim aff002; Sang Rul Park aff004
Působiště autorů:
Department of Earth and Marine Sciences, Jeju National University, Jeju, Republic of Korea
aff001; Department of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
aff002; Estuarine & Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
aff003; Coastal Marine Field Station, University of Waikato, Sulphur Point, Tauranga, New Zealand
aff004; Marine Biodiversity Research Institute, INTHESEA KOREA Inc., Jeju, Republic of Korea
aff005
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225551
Souhrn
The community structure and assemblages of marine benthic organisms were investigated in coastal areas near the Jang Bogo Antarctic Research Station in Terra Nova Bay during the 2012–2018 summer seasons. We also examined the recovery pattern of marine benthic organisms following disturbance due to the construction of the Jang Bogo Station. A total of 26 taxa were identified in the study area during the experimental period. Species number and diversity indices (richness, evenness, and diversity) were relatively low compared to data previously reported from Terra Nova Bay. Sphaerotylus antarcticus, Clavularia frankliniana, Hydractinia sp., Iridaea cordata, Fragilariopsis spp., Alcyonium antarcticum, and Metalaeospira pixelli were the dominant species in this area. Of these, the diatom Fragilariopsis spp. were the most abundant species, indicating their key role in maintaining the marine benthic community and controlling biogeochemical cycling. During the construction of the Jang Bogo Station, sediment coverage increased and diatoms declined due to the release of sediment into the coastal area. In February 2014, one month after the disturbance due to cyclone, the diatom coverage increased dramatically and thereby species number, richness index, and diversity index steadily rose from 2015 to 2018. However, non-metric multidimensional scaling ordination analysis of species similarities among sampling times showed that community structure had not completely recovered by 2018. Thus, long-term monitoring is required to elucidate the post-disturbance settlement mechanisms of marine benthic organisms at the study area in Terra Nova Bay.
Klíčová slova:
Antarctica – Community structure – Diatoms – Marine and aquatic sciences – Marine ecosystems – Marine environments – Sediment – Species diversity
Zdroje
1. Clarke A, Gaston KJ. Climate, energy and diversity. Proc R Soc Lond, Ser B: Biol Sci. 2006; 273:2257–66.
2. Peck LS, Morley SA, Richard J, Clark MS. Acclimation and thermal tolerance in Antarctic marine ectotherms. J Exp Biol. 2014; 217(1):16–22.
3. Amesbury MJ, Roland TP, Royles J, Hodgson DA, Convey P, Griffiths H, et al. Widespread biological response to rapid warming on the Antarctic Peninsula. Curr Biol. 2017; 27(11):1616–22. doi: 10.1016/j.cub.2017.04.034 28528907
4. Barnes DKA, Peck LS, Morley SA. Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change. Glob Change Biol. 2010; 16(11):3164–3169.
5. Barnes DKA, Clarke A. Antarctic marine biology. Curr Biol. 2011; 21:R451–7. doi: 10.1016/j.cub.2011.04.012 21683895
6. Clarke A. Marine benthic populations in Antarctica: patterns and processes. In: Ross RM, Hofmann EE, Quetin LB, editors. Foundations for ecological research west of the Antarctic Peninsula. Ant Res Ser. 1996; 70:373–388.
7. Smith RC, Baker KS, Fraser WR, Hofmann EE, Karl DM, Klinck JM, et al. The Palmer LTER: A long-term ecological research program at Palmer Station, Antarctica. Oceanography. 1995; 8(3):77–86.
8. Tin T, Fleming Z, Hughes K, Ainley D, Convey P, Moreno C, et al. Impacts of local human activities on the Antarctic environment. Ant Sci. 2009; 21(1):3–33.
9. Hosie G, Mormede S, Kitchener J, Takahashi K, Raymond B. Near-surface zooplankton communities. In: Broyer C, Koubbi P, editors. Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge. 2014. pp 422–430.
10. Deregibus D, Quartino ML, Zacher K, Campana GL, Barnes D. Understanding the link between sea ice, ice scour and Antarctic benthic biodiversity–the need for cross-station and international collaboration. Polar Rec. 2017; 53(2):43–152.
11. Piazza P, Cummings V, Guzzi A, Hawes I, Lohrer A, Marini S, et al. Underwater photogrammetry in Antarctica: long-term observations in benthic ecosystems and legacy data rescue. Polar Biol. 2019; 42(6):1061–1079.
12. Dayton PK, Jarrell SC, Kim S, Parnell PE, Thrush SF, Hammerstrom K, et al. Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecol Appl. 2019; 29(1):e01823. doi: 10.1002/eap.1823 30601593
13. Littler MM, Murray SN. Impact of sewage on the distribution, abundance and community structure of rocky intertidal macro-organisms. Mar Biol. 1975; 30(4):277–291.
14. Warwick RM. A new method for detecting pollution effects on marine macrobenthic communities. Mar Biol. 1986; 92(4):557–562.
15. Post AL, Beaman RJ, O’Brien PE, Eléaume M, Riddle MJ. Community structure and benthic habitats across the George V Shelf, East Antarctica: Trends through space and time. Deep Sea Res Part Ⅱ. 2011; 58(1–2):105–118.
16. Díaz P, López Gappa JJ, Piriz ML. Symptoms of eutrophication in intertidal macroalgal assemblages of Nuevo Gulf (Patagonia, Argentina). Bot Mar. 2002; 45(3):267–273.
17. Pinedo S, García M, Satta MP, De Torres M, Ballesteros E. Rocky shore communities as indicators of water quality: a case study in the Northwestern Mediterranean. Mar Pollut Bull. 2007; 55(1):126–135.
18. Martins CDL, Arantes N, Faveri C, Batista MB, Oliveira EC, Pagliosa PR, et al. The impact of coastal urbanization on the structure of phytobenthic communities in southern Brazil. Mar Pollut Bull. 2012; 64(4):772–8. doi: 10.1016/j.marpolbul.2012.01.031 22341882
19. Kim S, Kang YH, Choi CJ, Won N-I, Seo I-S, Lee HJ, et al. Effects of intensity and seasonal timing of disturbances on a rocky intertidal benthic community on the southern coast of Korea. Ecol Res. 2014; 29(3):421–431.
20. Cattaneo-Vietti R, Chiantore M, Albertelli G. The population structure and ecology of the Antarctic scallop Adamussium colbecki (Simth, 1902) at Terra Nova Bay (Ross Sea, Antarctica). Sci Mar. 1997; 61(2):15–24.
21. Barnes DKA, Conlan KE. Disturbance, colonization and development of Antarctic benthic communities. Philos Trans R Soc Lond B Biol. 2007; 362(1477):11–38.
22. Bharti PK, Sharma B, Singh RK, Tyagi AK. Waste generation and management in Antarctica. Procedia Environ Sci. 2016; 35:40–50.
23. Park Y, Yoo HJ, Lee WS, Lee J, Kim Y, Lee S-H, et al. Development and performance of a broadband seismic network near the new Korean Jang Bogo research station, Terra Nova Bay, East Antarctica. Seismol Res Lett. 2014; 85(6):1341–7.
24. Kim M, Cho A, Lim HS, Hong SG, Kim JH, Lee J, et al. Highly heterogeneous soil bacterial communities around Terra Nova Bay of Northern Victoria Land, Antarctica. PLoS ONE. 2015; 10(3):e0119966. doi: 10.1371/journal.pone.0119966 25799273
25. Blake JA. Polychaetes of the Family Spionidae from South America, Antarctica, and adjacent Seas and Island. Biology of the Antarctic Seas XIV. Antarct Res Ser. 1983; 39(3):205–287.
26. Brueggeman P. Cnidaria-Anthozoa: anemones, soft coral. Underwater Field Guide to Ross Island & McMurdo Sound, Antarctica. National Science Foundation's Office of Polar Programs. 1998.
27. Brueggeman P. Nemertea: proboscis worms. Underwater Field Guide to Ross Island & McMurdo Sound, Antarctica. National Science Foundation's Office of Polar Programs. 1998.
28. Brueggeman P. Porifera-Demospongiae: demosponges. Underwater Field Guide to Ross Island & McMurdo Sound, Antarctica. National Science Foundation's Office of Polar Programs. 1998.
29. Burton M. Porifera. Part II. Antarctic Sponges. British Antarctic “Terra Nova” Expedition 1910. Natural History Report. Zoology. 1929; 6(4):393–458.
30. Campos M, Mothes B, Mendes IRV. Antarctic sponges (Porifera, Demospongiae) of the South Shetland Islands and vicinity. Part I. Spirophorida, Astrophorida, Hadromerida, Halichondrida and Haplosclerida. Rev Bras Zool. 2007; 24(3):687–708.
31. Cano E, Lo´pez-Gonza´lez PJ. New data concerning postembryonic development in Antarctic Ammothea species (Pycnogonida: Ammotheidae). Polar Biol. 2013; 36(8):1175–1193.
32. Cantone G. Polychaeta “Sedentaria” of Terra Nova Bay (Ross Sea, Antarctica): Capitellidae to Serpulidae. Polar Biol. 1995; 15(4):295–302.
33. Cefarelli AO, Ferrario ME, Almandoz GO, Atencio AG, Akselman R, Vernet M. Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance. Polar Biol. 2010; 33(11):1463–1484.
34. Choe BL, Lee JR, Ahn I-Y, Chung H. Preliminary Study of Malacofauna of Maxwell Bay, South Shetland Islands, Antartica. Kor J Polar Res. 1992; 5(2):15–28.
35. Clark HES. The Fauna of the Ross Sea. Part 3. Asteroidea. N.Z Oceanogr Inst Mem. 1963; 21:1–84.
36. Clarke A, Johnston NM. Antarctic marine benthic diversity. Oceanogr Mar Biol. 2003; 41:47–114.
37. Cormaci M, Furnari G, Scammacca B. The benthic algal flora of Terra Nova Bay (Ross Sea, Antarctica). Bot Mar. 1992; 35(6):541–552.
38. Desqueyroux-Faúndez R. Demospongiae (Porifera) del litoral chileno antartico. Ser Cient INACH. 1989; 39:97–158.
39. Galea HR, Schories D. Some hydrozoans (Cnidaria) from King George Island, Antarctica. Zootaxa. 2012; 3321(1):1–21.
40. Ghiglione C, Alvaro MC, Cecchetto M, Canese S, Downey R, Guzzi A, et al. Porifera collection of the Italian National Antarctic Museum (MNA), with an updated checklist from Terra Nova Bay (Ross Sea). ZooKeys, 2018; 758:137–156.
41. Gibson R. Antarctic nemerteans: The anatomy, distribution and biology of Parborlasia Corrugatus (McIntosh, 1876) (Heteronemertea, Lineidae). Biology of the Antarctic Seas XIV. Ant Res Ser. 1983; 39(4):289–316.
42. Göcke C, Janussen D. Demospongiae of ANT XXIV/2 (SYSTCO I) Expedition—Antarctic Eastern Weddell Sea. Zootaxa. 2013; 3692 (1):28–101.
43. Hasle GR. Nitzschia and Fragilariopsis species studied in the light and electron microscopes: III. The genus Fragilariopsis. Skr Norske Vidensk-Akad I Mat-Nat KI NySerie. 1965; 21:1–49.
44. Hayward PJ. Antarctic Chelilostomatous Bryozoa. Oxford University Press; 1995.
45. Schories D, Kohlberg G. Marine Wildlife, King George Island, Antarctica. Dirk Schories Publications; 2016.
46. Koltun VM. Porifera–Part I: Antarctic Sponges. B.A.N.Z. Ant Res Exp 1929–1931. 1976; 9(4):147–198.
47. Larson RJ. Pelagic Scyphomedusae (Scyphozoa: Coronatae and Semaeostomeae) of the Southern Ocean. In: Kornicker LS, editor. Biology of the Antarctic Seas, XVI. Ant Res Ser. 1986; 41:59–165.
48. McKnight DG. Asteroids from the Ross Sea and the Balleny Islands. NZOI records. 1976; 3(4):21–31.
49. Ríos P, Cristobo FJ, Urgorri V. Poecilosclerida (Porifera, Demospongiae) collected by the Spanish Antarctic expedition Bentart-94. Cah Biol Mar. 2004; 45(2):97–119.
50. Topsent E. Notes sur les Éponges receuillies par le Français dans l'Antarctique. Description d'une Dendrilla nouvelle. Bull Mus Hist Nat. 1905; 11(6):502–5.
51. Verseveldt J. Van Ofwegen LP. New and redescribed species of Alcyonium Linnaeus, 1758(Anthozoa: Alcyonacea). Zool Med Leiden. 1992; 66(7):155–181.
52. Vine PJ. The Marine Fauna of New Zealand Spirorbinae (Polychaeta: Serpulidae). N.Z Oceanogr Inst Mem. 1977; 68:1–66.
53. Neill K. Amazing Antarctic Asteroids. A guide to the starfish of the Ross Sea. Version 1. NIWA by TC Media Ltd. 2016. Available from: https://www.niwa.co.nz/coasts-and-oceans/marine-identification-guides-and-fact-sheets/amazing-antarctic-asteroids
54. Dethier MN, Graham ES, Cohen S, Tear LM. Visual versus random-point percent cover estimations: ‘objective’ is not always better. Mar Ecol Prog Ser. 1993; 96(1):93–100.
55. Arntz WE, Brey T, Gallardo VA. Antarctic zoobenthos. Oceanogr Mar Biol: An Annual Review. 1994; 32:241–304.
56. Klöser H, Mercuri G, Laturnus F, Quartino ML, Wiencke C. On the competitive balance of macroalgae at Potter Cove (King George Island, South Shetland). Polar Biol. 1994; 14(1):11–16.
57. Barnes DKA. Sublittoral epifaunal communities at Signy Island, Antarctica. I. Below the ice-foot zone. Mar Biol. 1995; 121(3):555–563.
58. Barnes DKA. Sublittoral epifaunal communities at Signy Island, Antarctica. II. The ice-foot zone. Mar Biol. 1995; 121(3):565–572.
59. Cormaci M, Furnari G, Scammacca B. The macrophytobenthos of Terra Nova Bay. In: Faranda FM, Guglielmo L, Ianora A, editors. Ross Sea Ecology. Germany: Springer; 2000. pp 493–502.
60. Cattaneo-Vietti R, Chiantore M, Gambi MC, Alvertelli G, Cormaci M, Geronimo ID. Spatial and vertical distribution of benthic littoral communities in Terra Nova Bay. In: Faranda FM, Guglielmo L, Ianora A. editors. Ross Sea Ecology. Germany: Springer; 2000. pp 502–514.
61. Cummings VJ, Hewitt JE, Thrush SF, Marriott PM, Halliday NJ, Norkko A, et al. Linking Ross Sea coastal benthic communities to environmental conditions: documenting baselines in a spatially variable and changing world. Front Mar Sci. 2018; 5:232. doi: 10.3389/fmars.2018.00232
62. White MG. Marine Benthos. In: Laws RM, editor. Antarctic Ecology II. London: Academic Press; 1984. pp 421–461.
63. Dayton PK. Polar benthos. In: Smith WO, editor. Polar Oceanography, Part B: Chemistry, Biology and Geology. London: Academic Press; 1990. pp 631–685.
64. Majewska R, Convey P, De Stefano M. Summer epiphytic diatoms from Terra Nova Bay and Cape Evans (Ross Sea, Antarctica)-a synthesis and final conclusions. PloS ONE. 2016; 11(4):e0153254. doi: 10.1371/journal.pone.0153254 27078637
65. Arrigo KR, McClain CR. Spring phytoplankton production in the western Ross Sea. Science. 1994; 266(5183):261–3. doi: 10.1126/science.266.5183.261 17771447
66. Cunningham WL, Leventer A. Diatom assemblages in surface sediments of the Ross Sea: relationship to present oceanographic conditions. Ant Sci. 1998; 10(2):134–146.
67. Majewska R, Gambi MC, Totti CM, Pennesi C, De Stefeno M. Growth form analysis of epiphytic diatom communities of Terra Nova Bay (Ross Sea, Antarctica). Polar biol. 2013; 36(1):73–86.
68. Gilbert NS. Microphytobenthic seasonally in nearshore marine sediments at Signy Island, South Orkney Islands, Antarctica. Estuar Coast Shelf Sci. 1991; 33(1):89–104.
69. Ahn IY, Chung H, Kang JS, Kang SH. Diatom composition and biomass variability in nearshore waters of Maxwell Bay, Antarctica, during the 1992/1993 austral summer. Polar Biol. 1997; 17(2):123–130.
70. Karsten U, Schumann R, Rothe S, Jung I, Medin L. Temperature and light requirements for growth of two diatom species (Bacillariophyceae) isolated from an Arctic macroalga. Polar Biol. 2006; 29(6):476–486.
71. Glud RN, Kühl M, Wenzhöfer F, Rysgaard S. Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production. Mar Ecol Prog Ser. 2002; 238:15–29.
72. Wilhelm C, Büchel C, Fisahn J, Goss R, Jakob T, LaRoche J, et al. The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist. 2006; 157:91–124. doi: 10.1016/j.protis.2006.02.003 16621693
73. Cerrano C, Puce S, Chiantore M, Bavestrello G. Unusual trophic strategies of Hydractinia angusta (Cnidaria, Hydrozoa) from Terra Nova Bay, Antarctica. Polar Biol. 2000; 23(7):488–494
74. Orejas C, Gili JM, Arntz WE, Ros JD, López PJ, Teixidó N, et al. Benthic suspension feeders, key players in Antarctic marine ecosystems?. Contrib to Science. 2000; 1(3):299–311.
75. Rosso A, Sanfilippo R. Shallow-water bryozoans and serpuloideans from the Ross Sea (Terra Nova Bay, Antarctica). In: Faranda FM, Guiglielmo L, Ionora A editors. Ross Sea ecology. Berlin: Springer; 2000. pp 515–526
76. Amsler CD, Rowley RJ, Laur DR, Quetin LB, Ross RM. Vertical distribution on Antarctic Peninsular macroalgae: cover, biomass and species composition. Phycologia. 1995; 34(5):424–430.
77. Mystikou M, Peters AF, Asensi AO, Fletcher KI, Brickle P, van West P, et al. Seaweed biodiversity in the south-western Antarctic Peninsula: surveying macroalgal community composition in the Adelaide Island/Marguerite Bay region over a 35-year time span. Polar Biol. 2014; 37(11):1607–1619.
78. Gambi MC, Lorenti M, Russo GF, Scipione MB. Benthic associations of the shallow hard bottoms off Terra Nova Bay, Ross Sea: zonation, biomass and population structure. Ant Sci. 1994; 6(4):449–462.
79. Hedgpeth JW. Perspectives of benthic ecology in Antarctica. In: Quam Lo, editor. Research in the Antarctic. Washington: American Association for the Advancement of Science; 1971. pp 93–136.
80. Knox GA, Lowry JK. A comparison between the benthos of the Southern Ocean and the North Polar Ocean with special reference to the amphipods and the polychaeta. In: Dumbar MJ, editor. Polar oceans. Calgary: Arctic Institute of North America; 1977. pp 423–462.
81. Richardson MD, Hedgpeth JW. Antarctic soft-bottom microbenthic community adaptation to a cold stable highly productive, glacially affected environment. In: Llano S, editor. Adaptations within Antarctic ecosystem. Washington: Smithsonian Institution; 1977. pp 181–196.
82. Fountain AG, Saba G, Adams B, Doran P, Fraser W, Gooseff M, et al. The impact of a large-scale climate event on Antarctic ecosystem processes. Bio Sci. 2016; 66(10):848–863.
83. Maughan BC. Ecology of encrusting epifauna in Lough Hyne Marine Nature Reserve, Co. Cork, Ireland. Ph.D. thesis, University College Cork, Ireland. 2000.
84. Peck LS, Brockington S, VanHove S, Beghyn M. Community recovery following catastrophic iceberg impacts in Antarctica. Mar. Ecol. Prog. Ser. 1999; 186:1–8.
85. Connell JH, Slatyer RO. Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat. 1977; 111:1119–1144.
86. Wahl M. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser. 1989; 58:75–89.
87. Tsuchiya M, Nishihira M. Islands of Mytilus as a habitat for small intertidal animals—effect of island size on community structure. Mar Ecol Prog Ser. 1985; 25:71–81.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy