New physiological bench test reproducing nocturnal breathing pattern of patients with sleep disordered breathing
Autoři:
Shuo Liu aff001; Yann Rétory aff001; Amélie Sagniez aff001; Sébastien Hardy aff001; François Cottin aff002; Gabriel Roisman aff004; Michel Petitjean aff002
Působiště autorů:
Centre EXPLOR, Air Liquide Healthcare, Gentilly, France
aff001; CIAMS, Univ. Paris-Sud, Université Paris-Saclay, Orsay Cedex, France
aff002; CIAMS, Université d’Orléans, Orléans, France
aff003; Centre du Sommeil, Service d’Explorations Fonctionnelles Multidisciplinaires, Hôpital Antoine Béclère, Assistance Publique-Hôpitaux de Paris, Clamart, France
aff004
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225766
Souhrn
Previous studies have shown that Automatic Positive Airway Pressure devices display different behaviors when connected to a bench using theoretical respiratory cycle scripts. However, these scripts are limited and do not simulate physiological behavior during the night. Our aim was to develop a physiological bench that is able to simulate patient breathing airflow by integrating polygraph data. We developed an algorithm analyzing polygraph data and transformed this information into digital inputs required by the bench hardware to reproduce a patient breathing profile on bench. The inputs are respectively the simulated respiratory muscular effort pressure input for an artificial lung and the sealed chamber pressure to regulate the Starling resistor. We did simulations on our bench for a total of 8 hours and 59 minutes for a breathing profile from the demonstration recording of a Nox T3 Sleep Monitor. The simulation performance results showed that in terms of relative peak-valley amplitude of each breathing cycle, simulated bench airflow was biased by only 1.48% ± 6.80% compared to estimated polygraph nasal airflow for a total of 6,479 breathing cycles. For total respiratory cycle time, the average bias ± one standard deviation was 0.000 ± 0.288 seconds. For patient apnea events, our bench simulation had a sensitivity of 84.7% and a positive predictive value equal to 90.3%, considering 149 apneas detected both in polygraph nasal simulated bench airflows. Our new physiological bench would allow personalizing APAP device selection to each patient by taking into account individual characteristics of a sleep breathing profile.
Klíčová slova:
Acoustic signals – Algorithms – Breathing – Resistors – Respiratory physiology – Starlings – Apnea
Zdroje
1. Patil SP, Schneider H, Schwartz AR, Smith PL. Adult Obstructive Sleep Apnea. Chest. 2007;132: 325–337. doi: 10.1378/chest.07-0040 17625094
2. Remmers JE, deGroot WJ, Sauerland EK, Anch AM. Pathogenesis of upper airway occlusion during sleep. Journal of Applied Physiology. 1978;44: 931–938. doi: 10.1152/jappl.1978.44.6.931 670014
3. Jean-Louis G, Zizi F, Clark LT, Brown CD, McFarlane SI. Obstructive Sleep Apnea and Cardiovascular Disease: Role of the Metabolic Syndrome and Its Components. Journal of Clinical Sleep Medicine. 2008;4: 12.
4. Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. JAMA. 2000;283: 1829–1836. doi: 10.1001/jama.283.14.1829 10770144
5. Kribbs NB, Pack AI, Kline LR, Getsy JE, Schuett JS, Henry JN, et al. Effects of one night without nasal CPAP treatment on sleep and sleepiness in patients with obstructive sleep apnea. Am Rev Respir Dis. 1993;147: 1162–1168. doi: 10.1164/ajrccm/147.5.1162 8484626
6. Farré R, Montserrat JM, Rigau J, Trepat X, Pinto P, Navajas D. Response of automatic continuous positive airway pressure devices to different sleep breathing patterns: a bench study. Am J Respir Crit Care Med. 2002;166: 469–473. doi: 10.1164/rccm.2111050 12186822
7. Abdenbi F. Bench testing of auto-adjusting positive airway pressure devices. European Respiratory Journal. 2004;24: 649–658. doi: 10.1183/09031936.04.00133703 15459146
8. Coller D, Stanley D, Parthasarathy S. Effect of air leak on the performance of auto-PAP devices: a bench study. Sleep Breath. 2005;9: 167–175. doi: 10.1007/s11325-005-0032-z 16273421
9. Rigau J, Montserrat JM, Wöhrle H, Plattner D, Schwaibold M, Navajas D, et al. Bench model to simulate upper airway obstruction for analyzing automatic continuous positive airway pressure devices. Chest. 2006;130: 350–361. doi: 10.1378/chest.130.2.350 16899832
10. Hirose M, Honda J, Sato E, Shinbo T, Kokubo K, Ichiwata T, et al. Bench study of auto-CPAP devices using a collapsible upper airway model with upstream resistance. Respir Physiol Neurobiol. 2008;162: 48–54. doi: 10.1016/j.resp.2008.03.014 18499537
11. Netzel T, Hein H, Hein Y. APAP device technology and correlation with patient compliance. Somnologie. 2014;18: 113–120. doi: 10.1007/s11818-014-0662-0
12. Zhu K, Roisman G, Aouf S, Escourrou P. All APAPs Are Not Equivalent for the Treatment of Sleep Disordered Breathing: A Bench Evaluation of Eleven Commercially Available Devices. Journal of Clinical Sleep Medicine. 2015 [cited 12 Jul 2018]. doi: 10.5664/jcsm.4844 25766708
13. Isetta V, Montserrat JM, Santano R, Wimms AJ, Ramanan D, Woehrle H, et al. Novel Approach to Simulate Sleep Apnea Patients for Evaluating Positive Pressure Therapy Devices. Cymbalyuk G, editor. PLOS ONE. 2016;11: e0151530. doi: 10.1371/journal.pone.0151530 26978077
14. Gentina T, Fortin F, Douay B, Dernis JM, Herengt F, Bout JC, et al. Auto bi-level with pressure relief during exhalation as a rescue therapy for optimally treated obstructive sleep apnoea patients with poor compliance to continuous positive airways pressure therapy—a pilot study. Sleep and Breathing. 2011;15: 21–27. doi: 10.1007/s11325-009-0322-y 20204535
15. Positive Airway Pressure Initiation: A Randomized Controlled Trial to Assess the Impact of Therapy Mode and Titration Process on Efficacy, Adherence, and Outcomes. Sleep. 2011 [cited 6 Dec 2018]. doi: 10.5665/SLEEP.1166 21804670
16. Zhu K, Aouf S, Roisman G, Escourrou P. Pressure-Relief Features of Fixed and Autotitrating Continuous Positive Airway Pressure May Impair Their Efficacy: Evaluation with a Respiratory Bench Model. JCSM. 2016;12: 385–392. doi: 10.5664/jcsm.5590 26564383
17. Brown LK. Autotitrating CPAP. Chest. 2006;130: 312–314.
18. Berry RB, Parish JM, Hartse KM. The use of auto-titrating continuous positive airway pressure for treatment of adult obstructive sleep apnea. Sleep. 2002;25: 148–173. 11902425
19. Nolan GM. Comparison of three auto-adjusting positive pressure devices in patients with sleep apnoea. European Respiratory Journal. 2006;28: 159–164. doi: 10.1183/09031936.06.00127205 16571610
20. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Journal of Clinical Sleep Medicine. 2012 [cited 9 May 2017]. doi: 10.5664/jcsm.2172 23066376
21. Savitzky A, Golay MJ. Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry. 1964;36: 1627–1639.
22. Scholkmann F, Boss J, Wolf M. An Efficient Algorithm for Automatic Peak Detection in Noisy Periodic and Quasi-Periodic Signals. Algorithms. 2012;5: 588–603. doi: 10.3390/a5040588
23. Zhi YX, Vena D, Popovic MR, Bradley TD, Yadollahi A. Detecting inspiratory flow limitation with temporal features of nasal airflow. Sleep Medicine. 2018;48: 70–78. doi: 10.1016/j.sleep.2018.04.006 29860189
24. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1: 307–310. 2868172
25. Zhu K, Farré R, Katz I, Hardy S, Escourrou P. Mimicking a flow-limited human upper airway using a collapsible tube: relationships between flow patterns and pressures in a respiratory model. Journal of Applied Physiology. 2018;125: 605–614. doi: 10.1152/japplphysiol.00877.2017 29672227
26. Asyali MH, Berry RB, Khoo MCK. Assessment of closed-loop ventilatory stability in obstructive sleep apnea. IEEE Trans Biomed Eng. 2002;49: 206–216. doi: 10.1109/10.983454 11878312
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy