Comparative study of the composition of cultivated, naturally grown Cordyceps sinensis, and stiff worms across different sampling years
Autoři:
Yujue Zhou aff001; Min Wang aff001; Hui Zhang aff001; Zhuo Huang aff001; Jun Ma aff001
Působiště autorů:
College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, China
aff001
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225750
Souhrn
Natural Cordyceps sinensis, which is a valuable anti-tumor, immunomodulatory, and antiviral agent in Asia, has been overexploited in recent years. Therefore, it is important for cultivated C. sinensis to be recognized in the market. In this research, the main components of entirely cultivated, naturally grown C. sinensis, and stiff worms across different sampling years were detected and compared by HPLC-MS and UV spectrometry. The results indicated that the mean levels of adenosine and cordycepin were significantly higher, whereas the mean levels of mannitol and polysaccharides were remarkably lower in the cultivated type than in the natural type. No distinct difference in the average soluble protein content was observed. The composition of the stiff worms was similar to that of the natural herb, except that the total soluble protein content was higher, and that of mannitol was lower. In addition, the ultraviolet absorption spectroscopy of the three types showed high similarity at 260 nm. This research indicates that the main nutritional composition of cultivated and natural C. sinensis is identical and that cultivated type can be used as an effective substitute.
Klíčová slova:
Adenosine – Fungi – Herbs – Liquid chromatography-mass spectrometry – Mannitol – Moths and butterflies – Polysaccharides – Absorption spectroscopy
Zdroje
1. Huang T, Chong K, Wu C, Martel J, Ojcius DM, Lu C, et al. Hirsutella sinensis mycelium suppresses interleukin-1beta and interleukin-18 secretion by inhibiting both canonical and non-canonical inflammasomes. Sci Rep. 2013;3:1374. doi: 10.1038/srep01374 23459183
2. Olatunji OJ, Tang J, Tola A, Auberon F, Oluwaniyi O, Ouyang Z. The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia. 2018;129:293–316. doi: 10.1016/j.fitote.2018.05.010 29775778
3. Xu J, Huang Y, Chen XX, Zheng SC, Chen P, Mo MH. The Mechanisms of Pharmacological Activities of Ophiocordyceps sinensis Fungi. Phytother Res. 2016;30(10):1572–83. doi: 10.1002/ptr.5673 27373780
4. Li C, Li Z, Fan M, Cheng W, Long Y, Ding T, et al. The composition of Hirsutella sinensis, anamorph of Cordyceps sinensis. Journal of Food Composition and Analysis. 2006;19(8):800–5.
5. Pegler DN, YA YJ0, Li Y. The Chinese "Caterpillar Fungus". Mycologist. 1994;8:3–5.
6. Li Y, Wang X, Jiao L, Jiang Y, Li H, Jiang S, et al. A survey of the geographic distribution of Ophiocordyceps sinensis. J Microbiol. 2011;49(6):913–9. doi: 10.1007/s12275-011-1193-z 22203553
7. Li SP, Yang FQ, Tsim KW. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal. 2006;41:1571–84. doi: 10.1016/j.jpba.2006.01.046 16504449
8. Funga SY, Leea SS, Tana NH, Pailoorb J. Safety assessment of cultivated fruiting body of Ophiocordyceps sinensis evaluated through subacute toxicity in rats. J Ethnopharmacol. 2017;206:236–44. doi: 10.1016/j.jep.2017.05.037 28587826
9. Chiu C, Hwang T, Chan Y, El-Shazly M, Wu T, Lo I, et al. Research and development of Cordyceps in Taiwan. Food Science and Human Wellness. 2016;5(4):177–85.
10. Zhang P, Li S, Li J, Wei F, Cheng X, Zhang G, et al. Identification of Ophiocordyceps sinensis and Its Artificially Cultured Ophiocordyceps Mycelia by Ultra-Performance Liquid Chromatography/Orbitrap Fusion Mass Spectrometry and Chemometrics. Molecules. 2018;23(5).
11. Shih I-L, Tsai K-L, Hsieh C. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochemical Engineering Journal. 2007;33(3):193–201.
12. Guo L, Zhang G, Li Q, Xu X, Wang J. Novel arsenic markers for discriminating wild and cultivated cordyceps. Molecules. 2018;23(11).
13. Commission P. Pharmacopoeia of the People’s Republic of China. Chemical Industry Publishing House. 2015.(in Chinese)
14. Zhou X, Gong Z, Su Y, Lin J, Tang K. Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol. 2009;61(3):279–91. doi: 10.1211/jpp/61.03.0002 19222900
15. Li SP, Yang FQ, Tsim KW. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal. 2006;41(5):1571–84. doi: 10.1016/j.jpba.2006.01.046 16504449
16. Zhang X, Liu Q, Zhou W, Li P, Alolga RN, Qian Z, et al. A comparative proteomic characterization and nutritional assessment of naturally and artificially cultivated Cordyceps sinensis. J Proteomics. 2018;181:24–35. doi: 10.1016/j.jprot.2018.03.029 29609095
17. Li SP, Song Z, Dong T, Ji Z, Lo C, Zhu S. Distinction of water-soluble constituents between natural and cultured Cordyceps by capillary electrophoresis. Phytomedicine: international journal of phytotherapy and phytopharmacology. 2004;11:684–90.
18. Li X, Liu Q, Li W, Li Q, Qian Z, Liu X, et al. A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry. Crit Rev Biotechnol. 2019;39(2):181–91. doi: 10.1080/07388551.2018.1531820 30394122
19. Dong CH, Yao YJ. In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis. LWT—Food Science and Technology. 2008;41(4):669–77.
20. Wang J, Kan L, Nie S, Chen H, Cui SW, Phillips AO, et al. A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT—Food Science and Technology. 2015;63(1):2–7.
21. Zhanga J, Zhonga X, Lia S, Zhanga G, Liua X. Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by 1H NMR spectroscopy. J Pharm Biomed Anal. 2015;115:395–401. doi: 10.1016/j.jpba.2015.07.035 26279370
22. Chen W, Zhang W, Shen W, Wang K. Effects of the acid polysaccharide fraction isolated from a cultivated Cordyceps sinensis on macrophages in vitro. Cell Immunol. 2010;262(1):69–74. doi: 10.1016/j.cellimm.2010.01.001 20138259
23. Hsu T-H, Shiao L-H, Hsieh C, Chang D-M. A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom DongChongXiaCao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chemistry. 2002; 78: 463–9.
24. MF C, JF K. Carbohydrate analysis, a practical approach. Oxford University Press 1994;1:1–41.
25. Bentley HR, Cunningham KG, Spring FS. Cordycepin, a metabolic product from cultures of Cordyceps militaris(Linn.) link. Part II. The structure of cordycepin. Journal of the Chemical Society. 1951:2301–5.
26. Zeng W-B, Yu H, Ge F, Yang J-Y, Chen Z-H, Wang Y-B, et al. Distribution of nucleosides in populations of Cordyceps cicadae. Molecules. 2014;19(5):6123–41. doi: 10.3390/molecules19056123 24830714
27. Ikeda R, Nishimura M, Sun Y, Wada M, Nakashima K. Simple HPLC-UV determination of nucleosides and its application to the authentication of Cordyceps and its allies. Biomed Chromatogr. 2008;22(6):630–6. doi: 10.1002/bmc.980 18254139
28. Yang FQ, Li SP. Effects of sample preparation methods on the quantification of nucleosides in natural and cultured Cordyceps. J Pharm Biomed Anal. 2008;48(1):231–5. doi: 10.1016/j.jpba.2008.05.012 18573632
29. Fengqing Y, Liya G, Jean Wan Hong Y, Swee Ngin T, Shao-Ping L. Determination of nucleosides and nucleobases in different species of Cordyceps by capillary electrophoresis-mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2009;50(3):307–14. doi: 10.1016/j.jpba.2009.04.027 19497699
30. Yu L, Zhao J, Li SP, Fan H, Hong M, Wang YT, et al. Quality evaluation of Cordyceps through simultaneous determination of eleven nucleosides and bases by RP-HPLC. Journal of Separation Science. 2006;29(7):953–8. doi: 10.1002/jssc.200600007 16833227
31. Ning L, Shu-shana D, Xue-meia N, Wen-shenga Z, En-ruob G, Qin L. Determination of nucleosides in natural Cordyceps sinensis and cultured cordyceps by RP-HPLC. Chin PharmJ. 2006;41(12):948–51.
32. Tuli HS, Sandhu SS, Sharma AK. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech. 2013;4(1):1–12. doi: 10.1007/s13205-013-0121-9 28324458
33. Fan H, Li SP, Xiang JJ, Lai CM, Yang FQ, Gao JL, et al. Qualitative and quantitative determination of nucleosides, bases and their analogues in natural and cultured Cordyceps by pressurized liquid extraction and high performance liquid chromatography–electrospray ionization tandem mass spectrometry (HPLC–ESI–MS/MS). Analytica Chimica Acta. 2006;567(2):218–28.
34. CB M., SR J. Nucleoside antibiotics.IV.Metabolic fate of adenosine and cordycepin by Cordyceps militaris during cordycepin biosynthesis. Biochim Biophys Acta. 1969;182(2):307–15. doi: 10.1016/0005-2787(69)90181-6 4978604
35. Andrews RJ, Bringas JR, Muto RP. Effects of mannitol on cerebral blood flow, blood pressure, blood viscosity, hematocrit, sodium, and potassium. Surg Neurol. 1993;39:218–22. doi: 10.1016/0090-3019(93)90186-5 8456386
36. Feng L, Kienitz BA, Matsumoto C, Bruce J, Sisti M, Duong H, et al. Feasibility of using hyperosmolar mannitol as a liquid tumor embolization agent. AJNR Am J Neuroradiol 2005;26:1405–12. 15956507
37. Seyfried DM, Han Y, Yang D, Ding J, Savant-Bhonsale S, Shukairy MS, et al. Mannitol enhances delivery of marrow stromal cells to the brain after experimental intracerebral hemorrhage. Brain Research. 2008;1224:12–9. doi: 10.1016/j.brainres.2008.05.080 18573239
38. Lorenzl S, Koedel U, Pfister HW. Mannitol, but not allopurinol, modulates changes in cerebral blood flow, intracranial pressure, and brain water content during pneumococcal meningitis in the rat. Crit Care Med. 1996;24:1874–80. doi: 10.1097/00003246-199611000-00018 8917039
39. Guan J, Yang F-Q, Li S-P. Evaluation of carbohydrates in natural and cultured Cordyceps by pressurized liquid extraction and gas chromatography coupled with mass spectrometry. Molecules. 2010;15(6):4227–41. doi: 10.3390/molecules15064227 20657437
40. Dong C, Yao Y. Comparison of Some Metabolites Among Cultured Mycelia of Medicinal Fungus, Ophiocordyceps sinensis (Ascomycetes) from Different Geographical Regions International Journal of Medicinal Mushrooms. 2010;3(12):287–97.
41. Hu X, Shi Y, Zhang P, Miao M, Zhang T, Jiang B. D-mannose: properties, production, and applications: an overview. Comprehensive Reviews in Food Science and Food Safety. 2016;15(4):773–85.
42. Li X, Li D. Enhancing antioxidant activity of soluble polysaccharide from the submerged fermentation product of cordyceps sinensis by using cellulase. Advanced Materials Research. 2013;641-642(1):975–8.
43. Miyazaki T, Oikawa N, Yamada H. Studies on fungal polysaccharides XX. Galactomannan of C. sinensis. Chem Pharm Bull. 1977;25(12):3324–8.
44. Zhang A, Lu J, Zhang N, Zheng D, Zhang G, Teng L. Extraction, purification and anti-tumor activity of polysaccharide from mycelium of mutant Cordyceps Militaris. CHEM RES CHINESE UNIVERSITIES. 2010,; 26(5):798–802.
45. Wu D-T, Xie J, Wang L-Y, Ju Y-J, Lv G-P, Leong F, et al. Characterization of bioactive polysaccharides from Cordyceps militaris produced in China using saccharide mapping. Journal of Functional Foods. 2014;9:315–23.
46. Di C, JianPing Y, ShiPing X, XiaoGang Z, Yan Z, XiaoMing X, et al. Stable carbon isotope evidence for tracing the diet of the host Hepialus larva of Cordyceps sinensis in the Tibetan Plateau. Science in China Series D: Earth Sciences. 2009;52 (5):655–9.
47. Guo L, Xu X, Wu C, Lin L, Zou S, Luan T, et al. Fatty acid composition of lipids in wild Cordyceps sinensis from major habitats in China. Biomedicine & Preventive Nutrition. 2012;2(1):42–50.
48. Zuo H, Chen S, Zhang D, Zhao J, Yang F, Xia Z. Quality evaluation of natural Cordyceps sinensis from different collecting places in China by the contents of nucleosides and heavy metals. Analytical Methods. 2013;5(20):5450.
49. Yan J, Wang W, Wu J. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review. Journal of Functional Foods. 2014;6:33–47.
50. Rakhee, Sethy NK, Bhargava K, Misra K, Singh VK. Phytochemical and proteomic analysis of a high altitude medicinal mushroom cordyceps sinensis. Journal of Proteins And Proteomics. 2016;7s(3):187–97.
51. D. W. Yartsa gunbu-Cordyceps sinensis, economy, ecology & ethno-mycology of a fungus endemic to the Tibetan Plateau. Memorie della Societa Italiana di Scienze naturali e del Museo Civico di Storia naturale di Milano 2005;33:69–85.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy