A study of the impact of data sharing on article citations using journal policies as a natural experiment
Autoři:
Garret Christensen aff001; Allan Dafoe aff002; Edward Miguel aff003; Don A. Moore aff003; Andrew K. Rose aff003
Působiště autorů:
U.S. Census Bureau, Washington, DC, United States of America
aff001; University of Oxford, Oxford, England, United Kingdom
aff002; University of California, Berkeley, California, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225883
Souhrn
This study estimates the effect of data sharing on the citations of academic articles, using journal policies as a natural experiment. We begin by examining 17 high-impact journals that have adopted the requirement that data from published articles be publicly posted. We match these 17 journals to 13 journals without policy changes and find that empirical articles published just before their change in editorial policy have citation rates with no statistically significant difference from those published shortly after the shift. We then ask whether this null result stems from poor compliance with data sharing policies, and use the data sharing policy changes as instrumental variables to examine more closely two leading journals in economics and political science with relatively strong enforcement of new data policies. We find that articles that make their data available receive 97 additional citations (estimate standard error of 34). We conclude that: a) authors who share data may be rewarded eventually with additional scholarly citations, and b) data-posting policies alone do not increase the impact of articles published in a journal unless those policies are enforced.
Klíčová slova:
Citation analysis – Instrumental variable analysis – Political science – Science policy – Scientific publishing – Scientists – Statistical data – Science policy and economics
Zdroje
1. Miguel E, Camerer C, Casey K, Cohen J, Esterling KM, Gerber A, et al. Promoting transparency in social science research. Science. 2014;343(6166):30–1. doi: 10.1126/science.1245317 24385620
2. Tenopir C, Allard S, Douglass K, Aydinoglu AU, Wu L, Read E, et al. Data sharing by scientists: practices and perceptions. PloS One. 2011;6(6):e21101. doi: 10.1371/journal.pone.0021101 21738610
3. Vines TH, Albert AYK, Andrew RL, Débarre F, Bock DG, Franklin MT, et al. The availability of research data declines rapidly with article age. Curr Biol. 2014;24(1):94–7. doi: 10.1016/j.cub.2013.11.014 24361065
4. Christensen G, Miguel E. Transparency, reproducibility, and the credibility of economics research. J Econ Lit. 2018;56(3):920–80.
5. Piwowar HA, Day RS, Fridsma DB. Sharing detailed research data is associated with increased citation rate. PloS One. 2007;2(3):e308. doi: 10.1371/journal.pone.0000308 17375194
6. Piwowar HA, Vision TJ. Data reuse and the open data citation advantage. PeerJ. 2013;1:e175. doi: 10.7717/peerj.175 24109559
7. Henneken EA, Accomazzi A. Linking to data-effect on citation rates in astronomy. ArXiv Prepr ArXiv11113618. 2011;
8. Drachen T, Ellegaard O, Larsen A, Dorch S. Sharing data increases citations. Liber Quarterly. 2016 Aug 15;26(2).
9. Sears, JRL (2011), Data sharing effect on article citation rate in paleoceanography, Abstract IN53B-1628, presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5–9 Dec.
10. Gleditsch NP, Metelits C, Strand H. Posting your data: Will you be scooped or will you be famous? International Studies Perspectives. 2003;4(1):89–97.
11. Vandewalle P. Code sharing is associated with research impact in image processing. Computing in Science & Engineering. 2012 Jul;14(4):42–7.
12. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70(1):41–55.
13. Dehejia RH, Wahba S. Propensity score-matching methods for nonexperimental causal studies. Rev Econ Stat. 2002;84(1):151–61.
14. Imbens GW, Angrist JD. Identification and Estimation of Local Average Treatment Effects. Econometrica. 1994 Mar 1;62(2):467.
15. Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. Journal of the American statistical Association. 1996 Jun 1;91(434):444–55.
16. Acemoglu D, Johnson S, Robinson JA. The colonial origins of comparative development: An empirical investigation. Am Econ Rev. 2001;91(5):1369–401.
17. Galiani S, Gálvez RH. The life cycle of scholarly articles across fields of research. NBER Work Pap. 2017;23447.
18. Merton RK. A note on science and democracy. J Leg Pol Soc. 1942;1:115.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy