Smoking trajectories and risk of stroke until age of 50 years – The Northern Finland Birth Cohort 1966
Autoři:
Ina Rissanen aff001; Petteri Oura aff003; Markus Paananen aff003; Jouko Miettunen aff003; Mirjam I. Geerlings aff004
Působiště autorů:
Department of Neurology, Oulu University Hospital, Oulu, Finland
aff001; Department of Neurosurgery, Oulu University Hospital, Oulu, Finland
aff002; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
aff003; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
aff004; The Center For Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
aff005
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225909
Souhrn
Background
Smoking is a well-known risk factor for stroke. However, the relationship between smoking trajectories during the life course and stroke is not known.
Aims
We aimed to study the association of smoking trajectories and smoked pack-years with risk of ischemic and haemorrhagic strokes in a population-based birth cohort followed up to 50 years of age.
Methods
Within the Northern Finland Birth Cohort 1966, 11,999 persons were followed from antenatal period to age 50 years. The smoking behaviour was assessed with postal questionnaires at ages 14, 31 and 46 years. Stroke diagnoses were collected from nationwide registers using unique study number linkage. The associations between smoking behaviour and stroke risk were estimated using Cox regression models.
Results
Six different patterns in smoking habits throughout the life course were found in trajectory modelling. During 542,140 person-years of follow-up, 352 (2.9%) persons had a stroke. Continuous smoking during the life course was associated with increased stroke risk (HR = 1.69; 95% CI 1.10–2.60) after adjusting for sex, educational level, family history of strokes, leisure-time physical activity, body mass index, alcohol consumption, hypertension, hypercholesterolemia, and diabetes. Per every smoked pack-year the stroke risk increased 1.04-fold (95% CI 1.03–1.06). Other smoking trajectories were not significantly associated with stroke risk, nor were starting or ending age of smoking.
Conclusion
Accumulation of smoking history is associated with increased risk of stroke until age of 50 years. The increased stroke risk does not depend on the age at which smoking started. Given that the majority starts smoking at young age, primary prevention of strokes should focus on adolescent smoking.
Klíčová slova:
Alcohol consumption – Cohort studies – Hemorrhagic stroke – Ischemic stroke – Smoking habits – stroke
Zdroje
1. Feigin VL, Norrving B, Mensah GA. Global Burden of Stroke. Circ Res. 2017;120: 439–448. doi: 10.1161/CIRCRESAHA.116.308413 28154096
2. George MG, Tong X, Kuklina EV, Labarthe DR. Trends in stroke hospitalizations and associated risk factors among children and young adults, 1995–2008. Ann Neurol. 2011;70: 713–721. doi: 10.1002/ana.22539 21898534
3. Thrift AG, Thayabaranathan T, Howard G, Howard VJ, Rothwell PM, Feigin VL, et al. Global stroke statistics. Int J Stroke. 2017;12: 13–32. doi: 10.1177/1747493016676285 27794138
4. Kissela BM, Khoury JC, Alwell K, Moomaw CJ, Woo D, Adeoye O, et al. Age at stroke: temporal trends in stroke incidence in a large, biracial population. Neurology. 2012;79: 1781–1787. doi: 10.1212/WNL.0b013e318270401d 23054237
5. Marini C, Russo T, Felzani G. Incidence of stroke in young adults: a review. Stroke Res Treat. 2010;2011: 535672. doi: 10.4061/2011/535672 21197401
6. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health. 2013;1: 259. doi: 10.1016/S2214-109X(13)70089-5 25104492
7. Knoflach M, Matosevic B, Rucker M, Furtner M, Mair A, Wille G, et al. Functional recovery after ischemic stroke—a matter of age: data from the Austrian Stroke Unit Registry. Neurology. 2012;78: 279–285. doi: 10.1212/WNL.0b013e31824367ab 22238419
8. Radholm K, Arima H, Lindley RI, Wang J, Tzourio C, Robinson T, et al. Older age is a strong predictor for poor outcome in intracerebral haemorrhage: the INTERACT2 study. Age Ageing. 2015;44: 422–427. doi: 10.1093/ageing/afu198 25497513
9. Putaala J, Haapaniemi E, Metso AJ, Metso TM, Artto V, Kaste M, et al. Recurrent ischemic events in young adults after first-ever ischemic stroke. Ann Neurol. 2010;68: 661–671. doi: 10.1002/ana.22091 21031581
10. Rutten-Jacobs LC, Arntz RM, Maaijwee NA, Schoonderwaldt HC, Dorresteijn LD, van Dijk EJ, et al. Cardiovascular disease is the main cause of long-term excess mortality after ischemic stroke in young adults. Hypertension. 2015;65: 670–675. doi: 10.1161/HYPERTENSIONAHA.114.04895 25624336
11. Mons U, Muezzinler A, Gellert C, Schottker B, Abnet CC, Bobak M, et al. Impact of smoking and smoking cessation on cardiovascular events and mortality among older adults: meta-analysis of individual participant data from prospective cohort studies of the CHANCES consortium. BMJ. 2015;350: h1551. doi: 10.1136/bmj.h1551 25896935
12. Putaala J, Yesilot N, Waje-Andreassen U, Pitkaniemi J, Vassilopoulou S, Nardi K, et al. Demographic and geographic vascular risk factor differences in European young adults with ischemic stroke: the 15 cities young stroke study. Stroke. 2012;43: 2624–2630. doi: 10.1161/STROKEAHA.112.662866 22798330
13. O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376: 112–123. doi: 10.1016/S0140-6736(10)60834-3 20561675
14. Woodward M, Lam TH, Barzi F, Patel A, Gu D, Rodgers A, et al. Smoking, quitting, and the risk of cardiovascular disease among women and men in the Asia-Pacific region. Int J Epidemiol. 2005;34: 1036–1045. doi: 10.1093/ije/dyi104 15914503
15. Kawachi I, Colditz GA, Stampfer MJ, Willett WC, Manson JE, Rosner B, et al. Smoking cessation in relation to total mortality rates in women. A prospective cohort study. Ann Intern Med. 1993;119: 992–1000. doi: 10.7326/0003-4819-119-10-199311150-00005 8214996
16. Bhat VM, Cole JW, Sorkin JD, Wozniak MA, Malarcher AM, Giles WH, et al. Dose-response relationship between cigarette smoking and risk of ischemic stroke in young women. Stroke. 2008;39: 2439–2443. doi: 10.1161/STROKEAHA.107.510073 18703815
17. Mannami T, Iso H, Baba S, Sasaki S, Okada K, Konishi M, et al. Cigarette smoking and risk of stroke and its subtypes among middle-aged Japanese men and women: the JPHC Study Cohort I. Stroke. 2004;35: 1248–1253. doi: 10.1161/01.STR.0000128794.30660.e8 15118170
18. Högström G, Nordström A, Eriksson M, Nordström P. Risk Factors Assessed in Adolescence and the Later Risk of Stroke in Men: A 33-Year Follow-Up Study. Cerebrovasc Dis. 2015;39: 63–71. doi: 10.1159/000369960 25547343
19. Daniel F, Valerie W, Peter A, Tomas H, Danielsson AK. Cannabis, Tobacco, Alcohol Use, and the Risk of Early Stroke. Stroke. 2017;48: 265–270. doi: 10.1161/STROKEAHA.116.015565 28028147
20. Dutra LM, Glantz SA, Lisha NE, Song AV. Beyond experimentation: Five trajectories of cigarette smoking in a longitudinal sample of youth. PLoS One. 2017;12: e0171808. doi: 10.1371/journal.pone.0171808 28182748
21. Salin K, Kankaanpää A, Hirvensalo M, Lounassalo I, Yang X, Magnussen CG, et al. Smoking and Physical Activity Trajectories from Childhood to Midlife. Int J Environ Res Public Health. 2019;16: 974. doi: 10.3390/ijerph16060974 30889897
22. Brook DW, Brook JS, Zhang C, Whiteman M, Cohen P, Finch SJ. Developmental trajectories of cigarette smoking from adolescence to the early thirties: personality and behavioral risk factors. Nicotine Tob Res. 2008;10: 1283–1291. doi: 10.1080/14622200802238993 18686175
23. Artaud F, Sabia S, Dugravot A, Kivimaki M, Singh-Manoux A, Elbaz A. Trajectories of Unhealthy Behaviors in Midlife and Risk of Disability at Older Ages in the Whitehall II Cohort Study. J Gerontol A Biol Sci Med Sci. 2016;71: 1500–1506. doi: 10.1093/gerona/glw060 27034508
24. Mons U, Müezzinler A, Gellert C, Schöttker B, Abnet CC, Bobak M, et al. Impact of smoking and smoking cessation on cardiovascular events and mortality among older adults: meta-analysis of individual participant data from prospective cohort studies of the CHANCES consortium. BMJ. 2015;350: h1551. doi: 10.1136/bmj.h1551 25896935
25. Hackshaw A, Morris JK, Boniface S, Tang J, Milenković D. Low cigarette consumption and risk of coronary heart disease and stroke: meta-analysis of 141 cohort studies in 55 study reports. BMJ. 2018;360: j5855. doi: 10.1136/bmj.j5855 29367388
26. Peters SA, Huxley RR, Mark W. Smoking as a Risk Factor for Stroke in Women Compared With Men. Stroke. 2013;44: 2821–2828. doi: 10.1161/STROKEAHA.113.002342 23970792
27. Shinton R, Beevers G. Meta-analysis of relation between cigarette smoking and stroke. BMJ. 1989;298: 789–794. doi: 10.1136/bmj.298.6676.789 2496858
28. Harmsen P, Lappas G, Rosengren A, Wilhelmsen L. Long-term risk factors for stroke: twenty-eight years of follow-up of 7457 middle-aged men in Goteborg, Sweden. Stroke. 2006;37: 1663–1667. doi: 10.1161/01.STR.0000226604.10877.fc 16728686
29. Asplund K, Karvanen J, Giampaoli S, Jousilahti P, Niemela M, Broda G, et al. Relative risks for stroke by age, sex, and population based on follow-up of 18 European populations in the MORGAM Project. Stroke. 2009;40: 2319–2326. doi: 10.1161/STROKEAHA.109.547869 19520994
30. World Health Organization. International Classification of Diseases (ICD). Available: https://www.who.int/classifications/icd/en/.
31. Jones BL, Nagin DS, Roeder K. A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories. Sociol Methods Res. 2001;29: 374–393. doi: 10.1177/0049124101029003005
32. Andruff H, Carraro N, Thompson A, Gaudreau P, Louvet B. Latent class growth modelling: a tutorial. Tutor Quant Methods Psychol. 2009;5: 11–24. doi: 10.20982/tqmp.05.1.p011
33. Nagin DS, Odgers CL. Group-Based Trajectory Modeling in Clinical Research. Annu Rev Clin Psychol. 2010;6: 109–138. doi: 10.1146/annurev.clinpsy.121208.131413 20192788
34. van de Schoot R, Sijbrandij M, Winter SD, Depaoli S, Vermunt JK. The GRoLTS-Checklist: Guidelines for Reporting on Latent Trajectory Studies. Struct Equ Modeling. 2017;24: 451–467. doi: 10.1080/10705511.2016.1247646
35. Reinikainen J, Laatikainen T, Karvanen J, Tolonen H. Lifetime cumulative risk factors predict cardiovascular disease mortality in a 50-year follow-up study in Finland. Int J Epidemiol. 2014;44: 108–116. doi: 10.1093/ije/dyu235 25501686
36. van de Laar R. J., Stehouwer CD, Boreham CA, Murray LM, Schalkwijk CG, Prins MH, et al. Continuing smoking between adolescence and young adulthood is associated with higher arterial stiffness in young adults: the Northern Ireland Young Hearts Project. J Hypertens. 2011;29: 2201–2209. doi: 10.1097/HJH.0b013e32834b0ecf 21897293
37. Li S, Chen W, Srinivasan SR, Berenson GS. Childhood blood pressure as a predictor of arterial stiffness in young adults: the bogalusa heart study. Hypertension. 2004;43: 541–546. doi: 10.1161/01.HYP.0000115922.98155.23 14744922
38. Hogstrom G, Nordstrom A, Eriksson M, Nordstrom P. Risk factors assessed in adolescence and the later risk of stroke in men: a 33-year follow-up study. Cerebrovasc Dis. 2015;39: 63–71. doi: 10.1159/000369960 25547343
39. de Rooij NK, Linn FH, van der Plas J. A., Algra A, Rinkel GJ. Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry. 2007;78: 1365–1372. doi: 10.1136/jnnp.2007.117655 17470467
40. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369: 306–318. S0140-6736(07)60153-6. doi: 10.1016/S0140-6736(07)60153-6 17258671
41. Bejot Y, Bailly H, Durier J, Giroud M. Epidemiology of stroke in Europe and trends for the 21st century. Presse Med. 2016;45: e391–e398. S0755-4982(16)30309-8. doi: 10.1016/j.lpm.2016.10.003 27816343
42. Kissela BM, Khoury JC, Alwell K, Moomaw CJ, Woo D, Adeoye O, et al. Age at stroke: temporal trends in stroke incidence in a large, biracial population. Neurology. 2012;79: 1781–1787. doi: 10.1212/WNL.0b013e318270401d 23054237
43. Korja M, Lehto H, Juvela S, Kaprio J. Incidence of subarachnoid hemorrhage is decreasing together with decreasing smoking rates. Neurology. 2016;87: 1118–1123. doi: 10.1212/WNL.0000000000003091 27521438
44. Shinton R, Beevers G. Meta-analysis of relation between cigarette smoking and stroke. BMJ. 1989;298: 789–794. doi: 10.1136/bmj.298.6676.789 2496858
45. Juvela S, Hillbom M, Numminen H, Koskinen P. Cigarette smoking and alcohol consumption as risk factors for aneurysmal subarachnoid hemorrhage. Stroke. 1993;24: 639–646. doi: 10.1161/01.str.24.5.639 8488517
46. Sturgeon JD, Folsom AR, Longstreth WT Jr, Shahar E, Rosamond WD, Cushman M. Risk factors for intracerebral hemorrhage in a pooled prospective study. Stroke. 2007;38: 2718–2725. doi: 10.1161/STROKEAHA.107.487090 17761915
47. Sinha DN, Suliankatchi RA, Gupta PC, Thamarangsi T, Agarwal N, Parascandola M, et al. Global burden of all-cause and cause-specific mortality due to smokeless tobacco use: systematic review and meta-analysis. Tob Control. 2018;27: 35–42. doi: 10.1136/tobaccocontrol-2016-053302 27903956
48. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338: b2393. doi: 10.1136/bmj.b2393 19564179
49. Mackinnon A. The use and reporting of multiple imputation in medical research–a review. J Intern Med. 2010;268: 586–593. doi: 10.1111/j.1365-2796.2010.02274.x 20831627
50. Vladimirov D, Niemela S, Auvinen J, Timonen M, Keinanen-Kiukaanniemi S, Ala-Mursula L, et al. Changes in alcohol use in relation to sociodemographic factors in early midlife. Scand J Public Health. 2016;44: 249–257. doi: 10.1177/1403494815622088 26685194
51. Allison PD. Multiple Imputation for Missing Data: A Cautionary Tale. Sociol Methods Res. 2000;28: 301–309. doi: 10.1177/0049124100028003003
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy