Isobaric mass tagging and triple quadrupole mass spectrometry to determine lipid biomarker candidates for Alzheimer's disease
Autoři:
Suzumi M. Tokuoka aff001; Yoshihiro Kita aff001; Takao Shimizu aff001; Yoshiya Oda aff001
Působiště autorů:
The University of Tokyo, Graduate School of Medicine, Lipidomics Laboratory, Hongo, Bunkyo-Ku, Tokyo
aff001
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226073
Souhrn
The isobaric tagging method widely used in proteomic and lipidomic fields, with the multiple reaction monitoring (MRM) approach using a triple quadrupole mass spectrometer, was applied to identify biomarker candidates from plasma samples for Alzheimer’s disease (AD). We focused on the following phospholipids that have amino groups as the functional group: phosphatidylethanolamine (PE), Lyso-PE, phosphatidylserine, and Lyso-phosphatidylserine. We also investigated fatty acids that have a carboxy group. A sixplex tandem mass tag (TMT) was used for the isobaric tagging method in this study. The TMT reaction had high reproducibility in human plasma. A total of 196 human plasma samples from three AD cohorts were used for the study, and compared to pooled plasma quality control (QC) samples. The described method required only 40 MRM measurements, including the pooled QC samples, for a full comparison of the data. We found that the content of free fatty acids increased in AD samples in all the three cohorts, alkenyl PEs (ePEs) decreased over a one-year interval in AD patients, and ePEs weakly correlated with amyloid peptide (a-beta) 1–42 in cerebrospinal fluid. In conclusion, total free fatty acids in plasma are a risk factor for AD, and ePEs monitor candidates for AD. Therefore, TMT-lipidomics is a powerful approach for the determination of plasma biomarkers because of the high sample throughput.
Klíčová slova:
Alzheimer's disease – Biomarkers – Blood plasma – Fatty acids – Lipid analysis – Lipids – Phospholipids – Reproducibility
Zdroje
1. Fan S, Kind T, Cajka T, Hazen SL, Tang WHW, Kaddurah-Daouk R, et al. Systematic error removal using random forest for normalizing large-scale untargeted lipidomics data. Anal Chem. 2019;91: 3590–3596. doi: 10.1021/acs.analchem.8b05592 30758187
2. Siskos AP, Jain P, Römisch-Margl W, Bennett M, Achaintre D, Asad Y, et al. Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma. Anal Chem. 2017;89: 656–665. doi: 10.1021/acs.analchem.6b02930 27959516
3. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3: 1154–1169. doi: 10.1074/mcp.M400129-MCP200 15385600
4. Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, et al. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem. 2008;80: 2921–2931. doi: 10.1021/ac702422x 18312001
5. Zemski Berry KA, Murphy RC. Analysis of cell membrane aminophospholipids as isotope-tagged derivatives. J Lipid Res. 2005;46: 1038–1046. doi: 10.1194/jlr.M500014-JLR200 15716579
6. Zemski Berry KA, Murphy RC. Analysis of polyunsaturated aminophospholipid molecular species using isotope-tagged derivatives and tandem mass spectrometry/mass spectrometry/mass spectrometry. Anal Biochem. 2006;349: 118–128. doi: 10.1016/j.ab.2005.11.020 16384548
7. Nabetani T, Makino A, Hullin-Matsuda F, Hirakawa TA, Takeoka S, Okino N, et al. Multiplex analysis of sphingolipids using amine-reactive tags (iTRAQ). J Lipid Res. 2011;52: 1294–1302. doi: 10.1194/jlr.D014621 21487068
8. Barrientos RC, Zhang Q. Isobaric labeling of intact gangliosides toward multiplexed lc-ms/ms-based quantitative analysis. Anal Chem. 2018;90: 2578–2586. doi: 10.1021/acs.analchem.7b04044 29384363
9. Sun F, Choi AA, Wu R. Systematic analysis of fatty acids in human cells with a multiplexed isobaric tag (TMT)-based method. J Proteome Res. 2018;17: 1606–1614. doi: 10.1021/acs.jproteome.7b00896 29521506
10. Feith A, Teleki A, Graf M, Favilli L, Takors R. HILIC-Enabled 13 C Metabolomics strategies: Comparing quantitative precision and spectral accuracy of QTOF high- and QQQ low-resolution mass spectrometry. 2019; doi: 10.3390/metabo9040063 30986989
11. Panza F, D’Introno A, Colacicco AM, Capurso C, Pichichero G, Capurso SA, et al. Lipid metabolism in cognitive decline and dementia. Brain Res Rev. 2006;51: 275–292. doi: 10.1016/j.brainresrev.2005.11.007 16410024
12. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009;63: 287–303. doi: 10.1016/j.neuron.2009.06.026 19679070
13. Leduc V, Jasmin-Bélanger S, Poirier J. APOE and cholesterol homeostasis in Alzheimer’s disease. Trends Mol Med. 2010;16: 469–477. doi: 10.1016/j.molmed.2010.07.008 20817608
14. Zhang C, Wang Y, Wang D, Zhang J, Zhang F. NSAID exposure and risk of Alzheimer’s disease: An updated meta-analysis from cohort studies. Front Aging Neurosci. 2018;10: 1–9. doi: 10.3389/fnagi.2018.00001 29403371
15. Chandra S, Jana M, Pahan K. Aspirin induces lysosomal biogenesis and attenuates amyloid plaque pathology in a mouse model of Alzheimer’s disease via PPARα. J Neurosci. 2018;38: 6682–6699. doi: 10.1523/JNEUROSCI.0054-18.2018 29967008
16. Shobab LA, Hsiung GR, Feldman HH. Cholesterol in Alzheimer’s disease. 2005;4.
17. Wollmer MA. Cholesterol-related genes in Alzheimer’s disease. Biochim Biophys Acta—Mol Cell Biol Lipids. 2010;1801: 762–773. doi: 10.1016/j.bbalip.2010.05.009 20580938
18. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl- tert -butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49: 1137–1146. doi: 10.1194/jlr.D700041-JLR200 18281723
19. Zhou S, Hu Y, Veillon L, Snovida SI, Rogers JC, Saba J, et al. Quantitative LC-MS/MS glycomic analysis of biological samples using aminoxyTMT. Anal Chem. 2016;88: 7515–7522. doi: 10.1021/acs.analchem.6b00465 27377957
20. Snowden SG, Ebshiana AA, Hye A, An Y, Pletnikova O, O’Brien R, et al. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study. PLoS Med. 2017;14: 1–19. doi: 10.1371/journal.pmed.1002266 28323825
21. Cunnane SC, Schneider JA, Tangney C, Tremblay-Mercier J, Fortier M, Bennett DA, et al. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis. 2012;29: 691–697. doi: 10.3233/JAD-2012-110629 22466064
22. Sato Y, Suzuki I, Nakamura T, Bernier F, Aoshima K, Oda Y. Identification of a new plasma biomarker of Alzheimer’s disease using metabolomics technology. J Lipid Res. 2012;53: 567–576. doi: 10.1194/jlr.M022376 22203775
23. Sato Y, Bernier F, Yamanaka Y, Aoshima K, Oda Y, Ingelsson M, et al. Reduced plasma desmosterol-to-cholesterol ratio and longitudinal cognitive decline in Alzheimer’s disease. Alzheimer’s Dement Diagnosis, Assess Dis Monit. 2015;1: 67–74. doi: 10.1016/j.dadm.2014.11.009 27239493
24. Su XQ, Wang J, Sinclair AJ. Plasmalogens and Alzheimer’s disease: A review. Lipids Health Dis. 2019;18: 1–10. doi: 10.1186/s12944-018-0950-y 30611256
25. Wood PL, Mankidy R, Ritchie S, Heath D, Wood JA, Flax J, et al. Circulating plasmalogen levels and Alzheimer disease assessment scale-cognitive scores in Alzheimer patients. J Psychiatry Neurosci. 2010;35: 59–62. doi: 10.1503/jpn.090059 20040248
26. Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, Macarthur LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014;20: 415–418. doi: 10.1038/nm.3466 24608097
27. Casanova R, Varma S, Simpson B, Kim M, An Y, Saldana S, et al. Blood metabolite markers of preclinical Alzheimer’s disease in two longitudinally followed cohorts of older individuals. Alzheimer’s Dement. 2016;12: 815–822. doi: 10.1016/j.jalz.2015.12.008 26806385
28. Rauniyar N, Yates JR. Isobaric labeling-based relative quantification in shotgun proteomics. 2014; doi: 10.1021/pr500880b 25337643
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy