Pediatric trainees systematically under-report duty hour violations compared to electronic health record defined shifts
Autoři:
Adam C. Dziorny aff001; Evan W. Orenstein aff003; Robert B. Lindell aff002; Nicole A. Hames aff003; Nicole Washington aff004; Bimal Desai aff004
Působiště autorů:
Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
aff001; Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
aff002; Department of Pediatrics, Emory University School of Medicine and Division of Hospital Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
aff003; Division of General Pediatrics, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226493
Souhrn
Duty hour monitoring is required in accredited training programs, however trainee self-reporting is onerous and vulnerable to bias. The objectives of this study were to use an automated, validated algorithm to measure duty hour violations of pediatric trainees over a full academic year and compare to self-reported violations. Duty hour violations calculated from electronic health record (EHR) logs varied significantly by trainee role and rotation. Block-by-block differences show 36.8% (222/603) of resident-blocks with more EHR-defined violations (EDV) compared to self-reported violations (SRV), demonstrating systematic under-reporting of duty hour violations. Automated duty hour tracking could provide real-time, objective assessment of the trainee work environment, allowing program directors and accrediting organizations to design and test interventions focused on improving educational quality.
Klíčová slova:
Electronic medical records – Fatigue – Graduates – Inpatients – Intensive care units – Medical education – Pediatrics – Trainees
Zdroje
1. Philibert I, Friedmann P, Williams WT, Education AWG on RDHAC for GM. New requirements for resident duty hours. JAMA. Accreditation Council for Graduate Medical Education, American Medical Association, Chicago, IL 60610, USA. iphilibert@acgme.org; 2002;288: 1112–1114. Available: internal-pdf://238.253.92.129/Philibert 2002.pdf doi: 10.1001/jama.288.9.1112 12204081
2. Accreditation Council for Graduate Medical Education: Common Program Requirements [Internet]. 2017. https://www.acgme.org/Specialties/Program-Requirements-and-FAQs-and-Applications/pfcatid/16/Pediatrics
3. Petre M, Geana R, Cipparrone N, Harrison L, Hartzen M, Sulo S, et al. Comparing Electronic and Manual Tracking Systems for Monitoring Resident Duty Hours. Ochsner J. Medical Education, Advocate Lutheran General Hospital, Park Ridge, IL. Operational Integration and Communication/Clinical Affairs, Cancer Treatment Centers of America, Schaumburg, IL. Illinois Bone & Joint Institute, Morton Grove, IL. Psychiatry Residency; 2016;16: 16–21. Available: internal-pdf://200.7.214.144/Petre 2016.pdf 27046398
4. Gonzalo JD, Yang JJ, Ngo L, Clark A, Reynolds EE, Herzig SJ. Accuracy of residents’ retrospective perceptions of 16-hour call admitting shift compliance and characteristics. J Gr Med Educ. 2013;5: 630–633. doi: 10.4300/JGME-D-12-00311.1 24455013
5. Saunders DL, Kehoe KC, Rinehart VH, Berg BW. Self-reporting of internal medicine house staff work hours. Hawaii Med J. Medical Corps, US Army, Internal Medicine Resident, Tripler Army Medical Center, Honolulu, HI 96859, USA.; 2005;64: 14–16. Available: https://www.ncbi.nlm.nih.gov/pubmed/15751754 15751754
6. Carpenter RO, Spooner J, Arbogast PG, Tarpley JL, Griffin MR, Lomis KD. Work hours restrictions as an ethical dilemma for residents: a descriptive survey of violation types and frequency. Curr Surg. Department of General Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232–2730, USA. robert.carpenter@vanderbilt.edu; 2006;63: 448–455. 17084777
7. Lo V, Ward C. 2011 ACGME duty hour week proposal—a national survey of family medicine residents. Fam Med. San Joaquin Family Medicine Residency, A University of California Davis Primary Care Network Program, French Camp, CA, USA. vincent.lo@chw.edu; 2011;43: 318–324. Available: internal-pdf://94.96.218.137/Lo 2011.pdf 21557100
8. Ruff J. Surgical Resident Duty Hours. N Engl J Med. 7362 Palmleaf Ln., Columbus, OH ruffjm@gmail.com.; 2016;374: 2402. doi: 10.1056/NEJMc1604659
9. Byrne JM, Loo LK, Giang DW. Duty Hour Reporting: Conflicting Values in Professionalism. J Gr Med Educ. 2015;7: 395–400. doi: 10.4300/JGME-D-14-00763.1 26457145
10. Bennett CL, McDonald DA, Chang Y, Finch A, Vuong K, Rennie S, et al. A National Cross-Sectional Study of Surgery Residents Who Underreport Duty Hours. J Surg Educ. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. Electronic address: cbennett@bwh.harvard.edu. Duke University, Durham, North Carolina. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. The Mayo C; 2017; doi: 10.1016/j.jsurg.2017.05.008 28529194
11. Bilimoria KY, Quinn CM, Dahlke AR, Kelz RR, Shea JA, Rajaram R, et al. Use and Underlying Reasons for Duty Hour Flexibility in the Flexibility in Duty Hour Requirements for Surgical Trainees (FIRST) Trial. J Am Coll Surg. Surgical Outcomes and Quality Improvement Center, Department of Surgery and Center for Healthcare Studies, Feinberg School of Medicine and Northwestern Medicine, Northwestern University, Chicago, IL; American College of Surgeons, Chicago, IL. Electronic a; 2017;224: 118–125. doi: 10.1016/j.jamcollsurg.2016.10.046 27884805
12. Fletcher KE, Visotcky AM, Slagle JM, Tarima S, Weinger MB, Schapira MM. The composition of intern work while on call. J Gen Intern Med. Clement J. Zablocki VAMC, Milwaukee, WI, USA. Kathlyn.fletcher@va.gov; 2012;27: 1432–1437. doi: 10.1007/s11606-012-2120-7 22865015
13. Chen L, Guo U, Illipparambil LC, Netherton MD, Sheshadri B, Karu E, et al. Racing Against the Clock: Internal Medicine Residents’ Time Spent On Electronic Health Records. J Gr Med Educ. 2016;8: 39–44. doi: 10.4300/JGME-D-15-00240.1 26913101
14. Hripcsak G, Vawdrey DK, Fred MR, Bostwick SB. Use of electronic clinical documentation: time spent and team interactions. J Am Med Inf Assoc. Department of Biomedical Informatics, Columbia University Medical Center, New York, USA. hripcsak@columbia.edu; 2011;18: 112–117. doi: 10.1136/jamia.2010.008441 21292706
15. Hanauer DA, Zheng K, Commiskey EL, Duck MG, Choi SW, Blayney DW. Computerized prescriber order entry implementation in a physician assistant-managed hematology and oncology inpatient service: effects on workflow and task switching. J Oncol Pr. University of Michigan, Ann Arbor, MI; and Stanford University, Stanford, CA.; 2013;9: e103–14. doi: 10.1200/JOP.2012.000655 23942926
16. Gilleland M, Komis K, Chawla S, Fernandez S, Fishman M, Adams M. Resident duty hours in the outpatient electronic health record era: inaccuracies and implications. J Gr Med Educ. 2014;6: 151–154. doi: 10.4300/JGME-D-13-00061.1 24701327
17. Wang JK, Ouyang D, Hom J, Chi J, Chen JH, Chen Id JH. Characterizing electronic health record usage patterns of inpatient medicine residents using event log data. PLoS One. 2019;14: e0205379. doi: 10.1371/journal.pone.0205379 30726208
18. Shine D, Pearlman E, Watkins B. Measuring resident hours by tracking interactions with the computerized record. Am J Med. Department of Medicine, New York University Langone Medical Center, New York, 10016, USA. daniel.shine@nyumc.org; 2010;123: 286–290. doi: 10.1016/j.amjmed.2009.10.009 20193841
19. Dziorny AC, Orenstein EW, Lindell RB, Hames NA, Washington N, Desai B. Automatic Detection of Front-Line Clinician Hospital Shifts: A Novel Use of Electronic Health Record Timestamp Data. Appl Clin Inform. 2019;10: 28–37. doi: 10.1055/s-0038-1676819 30625502
20. Team Rs. RStudio: Integrated Development Environment for R [Internet]. Boston, MA: RStudio, Inc; 2016. http://www.rstudio.com/
21. Wickham H, Francois R, Henry L, Müller K. dplyr: A Grammar of Data Manipulation [Internet]. 2017. https://cran.r-project.org/package=dplyr
22. Wilke CO. cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2” [Internet]. 2017. https://cran.r-project.org/package=cowplot
23. Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. Springer-Verlag New York; 2016. http://ggplot2.org
24. Caldwell JA, Mallis MM, Caldwell JL, Paul MA, Miller JC, Neri DF, et al. Fatigue countermeasures in aviation. Aviat Space Environ Med. Alexandria, VA : Aerospace Medical Association; 2009;80: 29–59. doi: 10.3357/asem.2435.2009 19180856
25. Desai S V, Asch DA, Bellini LM, Chaiyachati KH, Liu M, Sternberg AL, et al. Education Outcomes in a Duty-Hour Flexibility Trial in Internal Medicine. N Engl J Med. From the Departments of Medicine (S.V.D.), Epidemiology (A.L.S., J.T., D.M.S.), and Biostatistics (J.T.), Johns Hopkins University, Baltimore; the Departments of Medicine (D.A.A., L.M.B., K.H.C., M.L., A.M.Y., J.M.A., J.A.S.), Psychiatry (M.B., D.F.D.), a; 2018;378: 1494–1508. doi: 10.1056/NEJMoa1800965 29557719
26. Gordon JA, Alexander EK, Lockley SW, Flynn-Evans E, Venkatan SK, Landrigan CP, et al. Does simulator-based clinical performance correlate with actual hospital behavior? The effect of extended work hours on patient care provided by medical interns. Acad Med. Gilbert Program in Medical Simulation, Harvard Medical School, Boston, Massachusetts, USA. jgordon3@partners.org; 2010;85: 1583–1588. doi: 10.1097/ACM.0b013e3181f073f0 20881679
27. Landrigan CP, Rothschild JM, Cronin JW, Kaushal R, Burdick E, Katz JT, et al. Effect of reducing interns’ work hours on serious medical errors in intensive care units. N Engl J Med. Division of Sleep Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. clandrigan@rics.bwh.harvard.edu; 2004;351: 1838–1848. doi: 10.1056/NEJMoa041406 15509817
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy