Hybrid denture acrylic composites with nanozirconia and electrospun polystyrene fibers
Autoři:
A. A. Elmadani aff001; I. Radović aff002; N. Z. Tomić aff003; M. Petrović aff001; D. B. Stojanović aff001; R. Jančić Heinemann aff001; V. Radojević aff001
Působiště autorů:
University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
aff001; University of Belgrade, Laboratory for Materials Sciences, Institute of Nuclear Sciences ‘‘Vinča”, Belgrade, Serbia
aff002; Innovation Center of Faculty of Technology and Metallurgy in Belgrade, Belgrade, Serbia
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226528
Souhrn
The processing and characterization of hybrid PMMA resin composites with nano-zirconia (ZrO2) and electrospun polystyrene (PS) polymer fibers were presented in this study. Reinforcement was selected with the intention to tune the physical and mechanical properties of the hybrid composite. Surface modification of inorganic particles was performed in order to improve the adhesion of reinforcement to the matrix. Fourier transform infrared spectroscopy (FTIR) provided successful modification of zirconia nanoparticles with 3-Methacryloxypropyltrimethoxysilane (MEMO) and bonding improvement between incompatible inorganic nanoparticles and PMMA matrix. Considerable deagglomeration of nanoparticles in the matrix occurred after the modification has been revealed by scanning electron microscopy (SEM). Microhardness increased with the concentration of modified nanoparticles, while the fibers were the modifier that lowers hardness and promotes toughness of hybrid composites. Impact test displayed increased absorbed energy after the PS electrospun fibers had been embedded. The optimized composition of the hybrid was determined and a good balance of thermal and mechanical properties was achieved.
Klíčová slova:
Acrylics – Composite materials – Mechanical properties – Nanomaterials – Nanoparticles – Polymers – Scanning electron microscopy – Fibers
Zdroje
1. Ismail IJ, “Development and Performance of Composite from Modified Nano Filler with Plasma Treated Fiber and Heat Cured Acrylic Denture Base Material on Some of Its Properties–In Vitro Study“, International Journal of Science and Research (IJSR) Volume 6 Issue 3, March 2017
2. Muklif OR, Ismail IJ, “Studying the effect of addition a composite of silanized nano-Al2O3 and plasma treated polypropylene fibers on some physical and mechanical properties of heat cured PMMA denture base material,” Journal of Baghdad College of Dentistry, vol. 27, no. 3, pp. 22–27, 2015.
3. Gad MM, Al-Thobity AM, Rahoma A., Abualsaud R, Al-Harbi AF, Akhtar S, “Reinforcement of PMMA Denture Base Material with a Mixture of ZrO2 Nanoparticles and Glass Fibers“, Hindawi, International Journal of Dentistry, Volume 2019, Article ID 2489393, 11 pages, https://doi.org/10.1155/2019/2489393
4. Gad M, Fouda S, Al-Harbi F, Napankangas R, Raustia A, “PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition,” International Journal of Nanomedicine, vol. 12, pp. 3801–3812, 2017. doi: 10.2147/IJN.S130722 28553115
5. Alhareb AO, Ahmad ZA, “Effect of Al2O3/ZrO2 reinforcement on the mechanical properties of PMMA denture base,” Journal of Reinforced Plastics and Composites, vol. 30, pp. 1–8, 2011.
6. Zhang XY, Zhang XJ, Huang ZL, Zhu B., Chen RR, “Hybrid effects of zirconia nanoparticles with aluminum borate whiskers on mechanical properties of denture base resin PMMA,” Dental Materials Journal, vol. 33, no. 1, pp. 141–146, 2014. doi: 10.4012/dmj.2013-054 24492125
7. Yu SH, Lee Y, Oh S, Cho HW, Oda Y, Bae JM, “Reinforcing effects of different fibers on denture base resin based on the fiber type, concentration, and combination,” Den. Mat. Journal, vol. 31, no. 6, pp. 1039–1046, 2012.
8. Lazouzi G, Vuksanović M, Tomić N.Z, Mitrić M, Petrović M, Radojević V, et al. Optimized preparation of alumina based fillers for tuning composite properties,Ceramics International, 7442–7449, 2018,
9. Salih SI, Oleiwi JK, Hamad QA, “Investigation of fatigue and compression strength for the PMMA reinforced by different system for denture applications,” International Journal of Biomedical Materials Research, vol. 3, no. 1, pp. 5–13, 2015.
10. Chen S, Liang W, “Effects of fillers on fiber reinforced acrylic denture base resins,” Mid-Taiwan Journal of Medicine, vol. 9, pp. 203–210, 2004.
11. Labella R, Lambrechts P, Van Meerbeek B and Vanherle G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent Mater 1999; 15: 128–137. doi: 10.1016/s0109-5641(99)00022-6 10551104
12. Xia Y, Zhang FM, Xie HF, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent 2008; 36: 450–455. doi: 10.1016/j.jdent.2008.03.001 18407396
13. Wang YJ, Lee JJ, Lloyd IK, Wilson OC Jr, Rosenblum M, Thompson V. High modulus nanopowder reinforced dimethacrylate matrix composites for dental cement applications. J Biomed Mater Res A 2007; 82A: 651–657.
14. Jandt KD and Sigusch BW, Future perspectives of resin-based dental materials. Dent Mater 2009; 25: 1001–1006. doi: 10.1016/j.dental.2009.02.009 19332352
15. Patki AS, Vural M, Gosz M. Confined compression of dental composites for Class I restorations. J Compos Mater 2010; 45: 1863–1872.
16. Wu M, Wu Y, Liu Z, Liu H. Optically transparent poly(methyl methacrylate) composite films reinforced with electrospun polyacrylonitrile nanofibers. J Compos Mater 2012; 46: 2731–2738.
17. Darbar UR, Huggett R, Harrison A. Denture fracture—a survey. Br Dent J 1994; 176: 342–345. doi: 10.1038/sj.bdj.4808449 8024869
18. Uyara T, Çökeliler D, Doğan M, Koçum IC, Karatay O, Denkbaş EB. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach. Mat Sci Eng C 2016; 62: 762–770.
19. Piascik JR, Wolter SD and Stoner BR. Development of a novel surface modification for improved bonding to zirconia. Dent Mater 2011; 27: 99–105.
20. Mani Rahulan K, Vinitha G, Devaraj Stephen L, Kanakam CC. Synthesis and optical limiting effects in ZrO2 and ZrO2@SiO2 core–shell nanostructures. Ceram Int 2013; 39: 5281–5286.
21. Matinlinna JP, Özcan M, Lassila LVJ, Vallittu PK. The effect of a 3-methacryloxypropyltrimethoxysilane and vinyltriisopropoxysilane blend and tris(3-trimethoxysilylpropyl)isocyanurate on the shear bond strength of composite resin to titanium metal. Dent Mater 2004; 20: 804–813. doi: 10.1016/j.dental.2003.10.009 15451235
22. Sakai M, Taira Y and Sawase T. Silane primers rather than heat treatment contribute to adhesive bonding between tri-n-butylborane resin and a machinable leucite-reinforced ceramic. Dent Mater J 2011; 30: 854–860. doi: 10.4012/dmj.2011-103 22123009
23. Skovgaard M, Almdal K, Sørensen BF, Linderoth S, van Lelieveld A. Shrinkage reduction of dental composites by addition of expandable zirconia filler. J Compos Mater 2011; 45: 2817–2822.
24. Ghosal A, Iqbal S, Ahmad S, “NiO nanofiller dispersed hybrid Soy epoxy anticorrosive coatings“, Progress in Organic Coatings 133 (2019) 61–76
25. Ghosal A, Ur Rahman O, Ahmad S, “High-Performance Soya Polyurethane Networked Silica Hybrid Nanocomposite Coatings“, Ind. Eng. Chem. Res. 2015, 54, 12770−12787
26. Ghosal SA. High performance anti-corrosive epoxy–titania hybrid nanocomposite coatings, New J. Chem., 2017, 41, 4599–4610
27. Guo Z, Pereira T, Choi O, Wang Y, Thomas Hahn H. Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 2006; 16: 2800–2808.
28. Guo Z, Wei S, Shedd B, Scaffaro R, Pereira T, Thomas Hahn H. Particle surface engineering effect on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites. J Mater Chem 2007; 17: 806–813.
29. Matinlinna JP, Lassila LVJ, Özcan M, Yli-Urpo A, Vallittu PK. An introduction to silanes and their clinical applications in dentistry. Int J Prosthodont 2004; 17: 155–164. 15119865
30. Agha H, Flinton R, Vaidyanathan T. Optimization of fracture resistance and stiffness of heat-polymerized high impact acrylic resin with localized e-glass fiber reinforcement at different stress points. J Prosthodont. 2016; 25(8): 647–655. doi: 10.1111/jopr.12477 26990705
31. Vojvodic D, Kozak D, Sertic J, Mehulic K, Celebic A, Komar D. Influence of Depth Alignment of E-Glass Fiber Reinforcements on Dental Base Polymer Flexural Strength. Mater Test. 2011; 53(9): 528–535.
32. Alla RK, Sajjan S, Alluri VR, Ginjupalli K, Upadhya N. Influence of Fiber Reinforcement on the Properties of Denture Base Resins. J Biomater Nanobiotechnol, 2013; 4: 91–97.
33. Guo G, Fan Y, Zhang JF, et al. Novel dental composites reinforced with zirconia–silica ceramic nanofibers. Dent Mater 2012; 28: 360–368. doi: 10.1016/j.dental.2011.11.006 22153326
34. Xu X and Xu HK. Dental Composites Reinforced with Ceramic Whiskers and Nanofibers. In Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (editors) Handbook of Nanomaterials Properties. Berlin: Heidelberg; 2014, pp.1299–1320
35. Alzarrug FA, Dimitrijević MM, Jančić Heinemann RM., Radojević V, Stojanović DB, Uskoković PS, et al. The use of different alumina fillers for improvement of the mechanical properties of hybrid PMMA composites, Mater Design. 2015; 86(5): 575–581.
36. Ahmed BHS, Stojanovic DB, Кojovic AM, Jankovic-Castvan I, Janackovic DjT, Uskokovic PS, et al. Preparation and characterization of poly(vinyl butyral) electrospun nanocomposite fibers reinforced with ultrasonically functionalized sepiolite. Ceram Int. 2014; 40(1): 1139–1146.
37. Liu X, Wang Z, Zhao C, Bu W, Na H. Preparation and characterization of silane-modified SiO2 particles reinforced resin composites with fluorinated acrylate polymer. J Mech Behav Biomed Mater 2018: 80: 11–19. doi: 10.1016/j.jmbbm.2018.01.004 29414465
38. Khosravani MR. Mechanical behavior of restorative dental composites under various loading conditions. J Mech Behav Biomed Mater. 2019; 93:151–157. doi: 10.1016/j.jmbbm.2019.02.009 30798181
39. Perez LEC, Machado AL, Vergani CE, Zamperini CA, Pavarina AC, Canevarolo SVJ, Resistance to impact to cross-linked denture base biopolymer materials: Effect of relining, glass flakes reinforcement and cyclic loading. J Mech Behav Biomed Mater. 2014; 37: 33–41. doi: 10.1016/j.jmbbm.2014.05.009 24880566
40. Prado LASA, Sriyai M, Ghislandi M, Barros-Timmons A, Schulte K. Surface Modification of Alumina Nanoparticles with Silane Coupling Agent. J Braz Chem Soc 2010; 21: 2238–2245.
41. Yerro O., Radojević V., Radović I., Kojović A., Uskoković P. S., Stojanović D. B., et al. Enhanced thermo-mechanical properties of acrylic resin reinforced with silanized alumina whiskers, Ceramics International, 42, 9, (2016), 10779–10786.
42. Yerro O, Radojević V, Radović I, Petrović M, Uskokovic P, Stojanović DB, et al. Thermoplastic acrylic resin with self-healing properties. Polym Eng Sci 2016; 56: 251–257.
43. Shakeri F, Nodehi A, Atai M. PMMA/double-modified organoclay nanocomposites as fillers for denture base materials with improved mechanical properties. J Mech Behav Biomed Mater. 2019; 90: 11–19. doi: 10.1016/j.jmbbm.2018.09.033 30342275
44. Matinlinnaa JP, Ozcan M, Lassila LVJ, Vallittua PK. The effect of a 3-methacryloxypropyltrimethoxysilane and vinyltriisopropoxysilane blend and tris(3-trimethoxysilylpropyl)isocyanurate on the shear bond strength of composite resin to titanium metal. Dent Mater 2004; 20: 804–813. doi: 10.1016/j.dental.2003.10.009 15451235
45. Şen P, Hirel C, Andraud C, Aronica C, Bretonnière Y, Mohammed A, et al. Fluorescence and FTIR Spectra Analysis of Trans-A2B2- Substituted Di- and Tetra-Phenyl Porphyrins, Mater. 2010; (3): 4446–4475.
46. Arkles B, Larson GL. Silicon Compounds: Silanes & Silicones. 3rd edition. Gelest Inc.; 2013
47. Mohammadnezhad G, Dinari M, Soltani R., Bozorgmehr Z, “Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly(methyl methacrylate) “, Appl. Surf. Sci. 346 (2015) 182–188.
48. Chuai C, Almdal K, Jørgensen JL. Thermal Behavior and Properties of Polystyrene/ Poly (methyl methacrylate) Blends. J App Polym Sci. 2004; 91: 609–620.
49. Vacatello M, “Monte Carlo simulations of polymer melts filled with solid nanoparticles“, Macromolecules, 34(6) (2001) 1946–1952.
50. Thomas P, Dakshayini BS, Kushwaha HS, Vaish R, Effect of Sr2TiMnO6 fillers on mechanical, dielectric and thermal behaviour of PMMA polymer, J. Adv. Dielect. 5(2) (2015) 1550018 (11 pages) doi: 10.1142/S2010135X15500186
51. Tommasini FJ, Cunha Ferreira L, Pimenta Tienne LG, de Oliveira Aguiar V, Prado da Silva MH, da Mota Rocha LF, et al. Poly (Methyl Methacrylate)-SiC Nanocomposites Prepared Through in Situ Polymerization, Materials Research. 2018; 21(6): e20180086
52. Abboud M, Turner M, Duguet E, Fontanille M, PMMA-based composite materials with reactive ceramic fillers Part 1.—Chemical modification and characterisation of ceramic particles. J. Mater. Chem. 7, 1527–1532 (1997).
53. Turner M, Duguet E, Labrugere C, Characterization of silane-modified ZrO2 powder surfaces. Surf. Interface Anal. 25, 917–923 (1997).
54. Otsuka T, Chujo Y, Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals, Polymer Journal (2010) 42, 58–65
55. Chuai C, Almdal K, Lyngaae-Jørgensen J, Thermal Behavior and Properties of Polystyrene/Poly(methyl methacrylate) Blends, Journal of Applied Polymer Science, Vol. 91, 609–620 (2004)
56. Ton-That C, Shard AG, Teare DOH, Bradley H, XPS and AFM surface studies of solvent-cast PS/PMMA blends, Polymer, Volume 42, Issue 3, February 2001, Pages 1121–1129
57. Li Z, Chen J, Su L, Zou B, Zhan P, Guanl Y, et al. A controlled synthesis method of polystyrene-bpolyisoprene-b-poly(methyl methacrylate) copolymer via anionic polymerization with trace amounts of THF having potential of a commercial scale, RSC Adv., 2017, 7, 9933–9940
58. Flores A, Cagiao ME, Ezquerra TA, Balta-Calleja FJ. Influence of Filler Structure on Microhardness of Carbon Black–Polymer Composites. J App Pol Sci. 2001; 79: 90–95.
59. Boyer RF. Dependence of Tg (K) on the Product of the Cohesive Energy Density (CED) and Chain Stiffness Parameter C∞. Macromolecules. 1992; 25: 5326–5330
60. Baltá-Calleja FJ, Flores A, Ania F, in Mechanical properties of polymers based on nanostructure and morphology, Michler GH, Baltá-Calleja FJ (editors), Taylor and Francis, London, UK;, 2005. p. 285
61. Flores A, Ania F, Baltá-Calleja FJ. From the glassy state to ordered polymer structures: A microhardness study. Polymer 2009; 50: 729.
62. Fakirov S, Balta-Calleja FJ, Krumova M. On the relationship between microhardness and glass transition temperature of some amorphous polymers. J Polym Sci Part B: Polym Phys. 1999; 37: 1413.
63. Liparoti S, Sorrentino A, Speranza V. Micromechanical Characterization of Complex Polypropylene Morphologies by HarmoniX AFM. Hindawi Int J Pol Sci. vol 2017. Article ID 9037127.
64. Devaprakasam D, Hatton PV, Möbus G, Inkson BJ. Effect of microstructure of nano- and micro-particle filled polymer composites on their tribo-mechanical performance. J Phys: Conference Series. 2008; 126: 012057.
65. Zouai F, Benabid FZ, Bouhelal S, Cagiao ME, Benachour D, Baltá-Calleja FJ. Nanostructure and morphology of poly(vinylidene fluoride)/polymethyl (methacrylate)/clay nanocomposites: correlation to micromechanical properties. J Mater Sci. 2017; 52(6): 1–11.
66. Musbah SS, Radojević V, Borna N, Stojanović D, Dramićanin M, Marinković A, et al. PMMA–Y2O3 (Eu3+) nanocomposites: optical and mechanical properties. J Serb Chem Soc. 2011; 76 (8): 1153–1161.
67. Nuthong W, Uawongsuwan P, Pivsa-Art W, Hamada H. Impact Property of Flexible Epoxy Treated Natural Fiber Reinforced PLA Composites, Energy Procedia 2013; 34: 839–847.
68. Scarpini Candido V, Clay Rios da Silva A, Tonini Simonassi N, Santos da Luz F, Monteirob SN. Toughness of polyester matrix composites reinforced with sugarcane bagasse fibers evaluated by Charpy impact tests. J Mater Res Technol. 2017; 6(4): 334–338
69. Nascimento LFC, Monteiro SN, Leme Louro LH, Santos da Luz F, Lopes dos Santos J, de Oliveira Braga F, et al. Charpy impact test of epoxy composites reinforced with untreated and mercerized mallow fibers. J Mater Res Technol. 2018; 7(4): 520–527
70. Shah V. Handbook of Plastics Testing and Failure Analysis; John Wiley & Sons: New Jersey. 2007.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy