yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development
Autoři:
Bernardo Blanco-Sánchez aff001; Aurélie Clément aff001; Sara J. Stednitz aff001; Jennifer Kyle aff002; Judy L. Peirce aff001; Marcie McFadden aff001; Jeremy Wegner aff001; Jennifer B. Phillips aff001; Ellen Macnamara aff003; Yan Huang aff003; David R. Adams aff003; Camilo Toro aff003; William A. Gahl aff003; May Christine V. Malicdan aff003; Cynthia J. Tifft aff003; Erika M. Zink aff002; Kent J. Bloodsworth aff002; Kelly G. Stratton aff002; ; David M. Koeller aff006; Thomas O. Metz aff002; Philip Washbourne aff001; Monte Westerfield aff001
Působiště autorů:
Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
aff001; Pacific Northwest National Laboratory, Richland, Washington, United States of America
aff002; National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, United States of America
aff003; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
aff004; Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
aff005; Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
aff006
Vyšlo v časopise:
yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008841
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008841
Souhrn
Hypomyelination, a neurological condition characterized by decreased production of myelin sheets by glial cells, often has no known etiology. Elucidating the genetic causes of hypomyelination provides a better understanding of myelination, as well as means to diagnose, council, and treat patients. Here, we present evidence that YIPPEE LIKE 3 (YPEL3), a gene whose developmental role was previously unknown, is required for central and peripheral glial cell development. We identified a child with a constellation of clinical features including cerebral hypomyelination, abnormal peripheral nerve conduction, hypotonia, areflexia, and hypertrophic peripheral nerves. Exome and genome sequencing revealed a de novo mutation that creates a frameshift in the open reading frame of YPEL3, leading to an early stop codon. We used zebrafish as a model system to validate that YPEL3 mutations are causative of neuropathy. We found that ypel3 is expressed in the zebrafish central and peripheral nervous system. Using CRISPR/Cas9 technology, we created zebrafish mutants carrying a genomic lesion similar to that of the patient. Our analysis revealed that Ypel3 is required for development of oligodendrocyte precursor cells, timely exit of the perineurial glial precursors from the central nervous system (CNS), formation of the perineurium, and Schwann cell maturation. Consistent with these observations, zebrafish ypel3 mutants have metabolomic signatures characteristic of oligodendrocyte and Schwann cell differentiation defects, show decreased levels of Myelin basic protein in the central and peripheral nervous system, and develop defasciculated peripheral nerves. Locomotion defects were observed in adult zebrafish ypel3 mutants. These studies demonstrate that Ypel3 is a novel gene required for perineurial cell development and glial myelination.
Klíčová slova:
Axons – Central nervous system – Larvae – Nerves – Schwann cells – Somites – Spinal cord – Zebrafish
Zdroje
1. Zalc B (2016) The acquisition of myelin: An evolutionary perspective. Brain Res 1641: 4–10. doi: 10.1016/j.brainres.2015.09.005 26367449
2. Hodgkin AL (1937) Evidence for electrical transmission in nerve: Part I. J Physiol 90: 183–210. doi: 10.1113/jphysiol.1937.sp003507 16994885
3. Lillie RS (1925) Factors Affecting Transmission and Recovery in the Passive Iron Nerve Model. J Gen Physiol 7: 473–507. doi: 10.1085/jgp.7.4.473 19872151
4. Seidl AH (2014) Regulation of conduction time along axons. Neuroscience 276: 126–134. doi: 10.1016/j.neuroscience.2013.06.047 23820043
5. Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109: 61–73. doi: 10.1016/s0092-8674(02)00677-3 11955447
6. Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101: 435–445. doi: 10.1016/s0092-8674(00)80853-3 10830170
7. Park HC, Appel B (2003) Delta-Notch signaling regulates oligodendrocyte specification. Development 130: 3747–3755. doi: 10.1242/dev.00576 12835391
8. Kucenas S, Snell H, Appel B (2008) nkx2.2a promotes specification and differentiation of a myelinating subset of oligodendrocyte lineage cells in zebrafish. Neuron Glia Biol 4: 71–81. doi: 10.1017/S1740925X09990123 19737431
9. Lu QR, Sun T, Zhu Z, Ma N, Garcia M, et al. (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109: 75–86. doi: 10.1016/s0092-8674(02)00678-5 11955448
10. Ravanelli AM, Appel B (2015) Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment. Genes Dev 29: 2504–2515. doi: 10.1101/gad.271312.115 26584621
11. Touahri Y, Escalas N, Benazeraf B, Cochard P, Danesin C, et al. (2012) Sulfatase 1 promotes the motor neuron-to-oligodendrocyte fate switch by activating Shh signaling in Olig2 progenitors of the embryonic ventral spinal cord. J Neurosci 32: 18018–18034. doi: 10.1523/JNEUROSCI.3553-12.2012 23238718
12. Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, et al. (2002) The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12: 1157–1163. doi: 10.1016/s0960-9822(02)00926-0 12121626
13. Hornig J, Frob F, Vogl MR, Hermans-Borgmeyer I, Tamm ER, et al. (2013) The transcription factors Sox10 and Myrf define an essential regulatory network module in differentiating oligodendrocytes. PLoS Genet 9: e1003907. doi: 10.1371/journal.pgen.1003907 24204311
14. Weider M, Starost LJ, Groll K, Kuspert M, Sock E, et al. (2018) Nfat/calcineurin signaling promotes oligodendrocyte differentiation and myelination by transcription factor network tuning. Nat Commun 9: 899. doi: 10.1038/s41467-018-03336-3 29500351
15. Liu Z, Hu X, Cai J, Liu B, Peng X, et al. (2007) Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Dev Biol 302: 683–693. doi: 10.1016/j.ydbio.2006.10.007 17098222
16. Tsai HH, Niu J, Munji R, Davalos D, Chang J, et al. (2016) Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351: 379–384. doi: 10.1126/science.aad3839 26798014
17. Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, et al. (2006) In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 9: 1506–1511. doi: 10.1038/nn1803 17099706
18. Topilko P, Schneider-Maunoury S, Levi G, Baron-Van Evercooren A, Chennoufi AB, et al. (1994) Krox-20 controls myelination in the peripheral nervous system. Nature 371: 796–799. doi: 10.1038/371796a0 7935840
19. Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, et al. (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325: 1402–1405. doi: 10.1126/science.1173474 19745155
20. Finzsch M, Schreiner S, Kichko T, Reeh P, Tamm ER, et al. (2010) Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage. J Cell Biol 189: 701–712. doi: 10.1083/jcb.200912142 20457761
21. Grove M, Kim H, Santerre M, Krupka AJ, Han SB, et al. (2017) YAP/TAZ initiate and maintain Schwann cell myelination. Elife 6.
22. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6: 671–682. doi: 10.1038/nrn1746 16136171
23. Kao SC, Wu H, Xie J, Chang CP, Ranish JA, et al. (2009) Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science 323: 651–654. doi: 10.1126/science.1166562 19179536
24. Salzer JL (2015) Schwann cell myelination. Cold Spring Harb Perspect Biol 7: a020529. doi: 10.1101/cshperspect.a020529 26054742
25. Parmantier E, Lynn B, Lawson D, Turmaine M, Namini SS, et al. (1999) Schwann cell-derived Desert hedgehog controls the development of peripheral nerve sheaths. Neuron 23: 713–724. doi: 10.1016/s0896-6273(01)80030-1 10482238
26. Kucenas S, Takada N, Park HC, Woodruff E, Broadie K, et al. (2008) CNS-derived glia ensheath peripheral nerves and mediate motor root development. Nat Neurosci 11: 143–151. doi: 10.1038/nn2025 18176560
27. Shanthaveerappa TR, Bourne GH (1962) A perineural epithelium. J Cell Biol 14: 343–346. doi: 10.1083/jcb.14.2.343 13911261
28. Burkel WE (1967) The histological fine structure of perineurium. Anat Rec 158: 177–189. doi: 10.1002/ar.1091580207 6039587
29. Kucenas S (2015) Perineurial glia. Cold Spring Harb Perspect Biol 7.
30. Clark JK, O'Keefe A, Mastracci TL, Sussel L, Matise MP, et al. (2014) Mammalian Nkx2.2+ perineurial glia are essential for motor nerve development. Dev Dyn 243: 1116–1129. doi: 10.1002/dvdy.24158 24979729
31. Baker SJ (2003) Small unstable apoptotic protein, an apoptosis-associated protein, suppresses proliferation of myeloid cells. Cancer Res 63: 705–712. 12566317
32. Hosono K, Sasaki T, Minoshima S, Shimizu N (2004) Identification and characterization of a novel gene family YPEL in a wide spectrum of eukaryotic species. Gene 340: 31–43. doi: 10.1016/j.gene.2004.06.014 15556292
33. Kelley KD, Miller KR, Todd A, Kelley AR, Tuttle R, et al. (2010) YPEL3, a p53-regulated gene that induces cellular senescence. Cancer Res 70: 3566–3575. doi: 10.1158/0008-5472.CAN-09-3219 20388804
34. Tuttle R, Miller KR, Maiorano JN, Termuhlen PM, Gao Y, et al. (2012) Novel senescence associated gene, YPEL3, is repressed by estrogen in ER+ mammary tumor cells and required for tamoxifen-induced cellular senescence. Int J Cancer 130: 2291–2299. doi: 10.1002/ijc.26239 21671470
35. Zhang J, Wen X, Ren XY, Li YQ, Tang XR, et al. (2016) YPEL3 suppresses epithelial-mesenchymal transition and metastasis of nasopharyngeal carcinoma cells through the Wnt/beta-catenin signaling pathway. J Exp Clin Cancer Res 35: 109. doi: 10.1186/s13046-016-0384-1 27400785
36. Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468: 214–222. doi: 10.1038/nature09611 21068830
37. Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1: 20–29. doi: 10.1038/35049541 11262869
38. Danesin C, Soula C (2017) Moving the Shh Source over Time: What Impact on Neural Cell Diversification in the Developing Spinal Cord? J Dev Biol 5.
39. Zannino DA, Appel B (2009) Olig2+ precursors produce abducens motor neurons and oligodendrocytes in the zebrafish hindbrain. J Neurosci 29: 2322–2333. doi: 10.1523/JNEUROSCI.3755-08.2009 19244509
40. Flanagan-Steet H, Fox MA, Meyer D, Sanes JR (2005) Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations. Development 132: 4471–4481. doi: 10.1242/dev.02044 16162647
41. Qi Y, Cai J, Wu Y, Wu R, Lee J, et al. (2001) Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128: 2723–2733. 11526078
42. Lyons DA, Naylor SG, Scholze A, Talbot WS (2009) Kif1b is essential for mRNA localization in oligodendrocytes and development of myelinated axons. Nat Genet 41: 854–858. doi: 10.1038/ng.376 19503091
43. Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR (2015) The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Galpha12/13 and RhoA. Nat Commun 6: 6122. doi: 10.1038/ncomms7122 25607772
44. Czopka T, Ffrench-Constant C, Lyons DA (2013) Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev Cell 25: 599–609. doi: 10.1016/j.devcel.2013.05.013 23806617
45. Grosch S, Schiffmann S, Geisslinger G (2012) Chain length-specific properties of ceramides. Prog Lipid Res 51: 50–62. doi: 10.1016/j.plipres.2011.11.001 22133871
46. Ben-David O, Futerman AH (2010) The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases. Neuromolecular Med 12: 341–350. doi: 10.1007/s12017-010-8114-x 20502986
47. Bansal R, Winkler S, Bheddah S (1999) Negative regulation of oligodendrocyte differentiation by galactosphingolipids. J Neurosci 19: 7913–7924. doi: 10.1523/JNEUROSCI.19-18-07913.1999 10479693
48. Stednitz SJ, McDermott EM, Ncube D, Tallafuss A, Eisen JS, et al. (2018) Forebrain Control of Behaviorally Driven Social Orienting in Zebrafish. Curr Biol 28: 2445–2451 e2443. doi: 10.1016/j.cub.2018.06.016 30057306
49. Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16: 668–676. doi: 10.1038/nn.3390 23624515
50. Eyermann C, Czaplinski K, Colognato H (2012) Dystroglycan promotes filopodial formation and process branching in differentiating oligodendroglia. J Neurochem 120: 928–947. doi: 10.1111/j.1471-4159.2011.07600.x 22117643
51. Bacon C, Lakics V, Machesky L, Rumsby M (2007) N-WASP regulates extension of filopodia and processes by oligodendrocyte progenitors, oligodendrocytes, and Schwann cells-implications for axon ensheathment at myelination. Glia 55: 844–858. doi: 10.1002/glia.20505 17405146
52. Krasnow AM, Ford MC, Valdivia LE, Wilson SW, Attwell D (2018) Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nat Neurosci 21: 24–28. doi: 10.1038/s41593-017-0031-y 29230052
53. Chrast R, Saher G, Nave KA, Verheijen MH (2011) Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models. J Lipid Res 52: 419–434. doi: 10.1194/jlr.R009761 21062955
54. Gahl WA, Tifft CJ (2011) The NIH Undiagnosed Diseases Program: lessons learned. Jama 305: 1904–1905. doi: 10.1001/jama.2011.613 21558523
55. Gahl WA, Markello TC, Toro C, Fajardo KF, Sincan M, et al. (2012) The National Institutes of Health Undiagnosed Diseases Program: insights into rare diseases. Genet Med 14: 51–59. doi: 10.1038/gim.0b013e318232a005 22237431
56. Gahl WA, Mulvihill JJ, Toro C, Markello TC, Wise AL, et al. (2016) The NIH Undiagnosed Diseases Program and Network: Applications to modern medicine. Mol Genet Metab 117: 393–400. doi: 10.1016/j.ymgme.2016.01.007 26846157
57. Pemberton PJV E.; Bone W. P.; Markello C. J.; Flynn E. D.; Links A. E.; Boerkoel C. F.; Adams D. R.; Gahl W. A.; Markello T. C., NIH Intramural Sequencing Center, NIH Genomics Core, UDP Clinical Team (2014) Diploid alignment of whole human genome data. 64th Annual Meeting of the American Society of Human Genetics. San Diego.
58. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303. doi: 10.1101/gr.107524.110 20644199
59. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491–498. doi: 10.1038/ng.806 21478889
60. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, et al. (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 11: 11 10 11–11 10 33.
61. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80–92.
62. Richards S, Aziz N, Bale S, Bick D, Das S, et al. (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17: 405–424. doi: 10.1038/gim.2015.30 25741868
63. Westerfield M (2007) The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio), 5 edn (Eugene: University of Oregon Press).
64. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203: 253–310. doi: 10.1002/aja.1002030302 8589427
65. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3: 59–69. doi: 10.1038/nprot.2007.514 18193022
66. Strahle U, Blader P, Adam J, Ingham PW (1994) A simple and efficient procedure for non-isotopic in situ hybridization to sectioned material. Trends Genet 10: 75–76. doi: 10.1016/0168-9525(94)90221-6 8178367
67. Blanco-Sanchez B, Clement A, Fierro J Jr., Washbourne P, Westerfield M(2014) Complexes of Usher proteins preassemble at the endoplasmic reticulum and are required for trafficking and ER homeostasis. Dis Model Mech 7: 547–559. doi: 10.1242/dmm.014068 24626987
68. Cunliffe VT, Casaccia-Bonnefil P (2006) Histone deacetylase 1 is essential for oligodendrocyte specification in the zebrafish CNS. Mech Dev 123: 24–30. doi: 10.1016/j.mod.2005.10.005 16324829
69. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497–509. 13428781
70. Nakayasu ES, Nicora CD, Sims AC, Burnum-Johnson KE, Kim YM, et al. (2016) MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses. mSystems 1.
71. Kyle JE, Crowell KL, Casey CP, Fujimoto GM, Kim S, et al. (2017) LIQUID: an-open source software for identifying lipids in LC-MS/MS-based lipidomics data. Bioinformatics 33: 1744–1746. doi: 10.1093/bioinformatics/btx046 28158427
72. Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11: 395. doi: 10.1186/1471-2105-11-395 20650010
73. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, et al. (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81: 10038–10048. doi: 10.1021/ac9019522 19928838
74. Webb-Robertson BJ, Kim YM, Zink EM, Hallaian KA, Zhang Q, et al. (2014) A Statistical Analysis of the Effects of Urease Pre-treatment on the Measurement of the Urinary Metabolome by Gas Chromatography-Mass Spectrometry. Metabolomics 10: 897–908. doi: 10.1007/s11306-014-0642-1 25254001
75. Matzke MM, Waters KM, Metz TO, Jacobs JM, Sims AC, et al. (2011) Improved quality control processing of peptide-centric LC-MS proteomics data. Bioinformatics 27: 2866–2872. doi: 10.1093/bioinformatics/btr479 21852304
76. Holm S (1979) A Simple Sequentially Rejective Multiple Test Procedure. Scand J Statist 6: 65–70.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 6
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- „Jednohubky“ z klinického výzkumu – 2024/44
Nejčtenější v tomto čísle
- Osteocalcin promotes bone mineralization but is not a hormone
- AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization
- Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis