Duplication and divergence of the retrovirus restriction gene Fv1 in Mus caroli allows protection from multiple retroviruses
Autoři:
Melvyn W. Yap aff001; George R. Young aff001; Renata Varnaite aff001; Serge Morand aff002; Jonathan P. Stoye aff001
Působiště autorů:
The Francis Crick Institute, London, United Kingdom
aff001; Centre National de la Recherche Scientifique-Centre de coopération Internationale en Recherche Agronomique pour le Développement Animal et Gestion Intégrée des Risques, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
aff002; Faculty of Medicine, Imperial College London, London, United Kingdom
aff003
Vyšlo v časopise:
Duplication and divergence of the retrovirus restriction gene Fv1 in Mus caroli allows protection from multiple retroviruses. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008471
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008471
Souhrn
Viruses and their hosts are locked in an evolutionary race where resistance to infection is acquired by the hosts while viruses develop strategies to circumvent these host defenses. Forming one arm of the host defense armory are cell autonomous restriction factors like Fv1. Originally described as protecting laboratory mice from infection by murine leukemia virus (MLV), Fv1s from some wild mice have also been found to restrict non-MLV retroviruses, suggesting an important role in the protection against viruses in nature. We surveyed the Fv1 genes of wild mice trapped in Thailand and characterized their restriction activities against a panel of retroviruses. An extra copy of the Fv1 gene, named Fv7, was found on chromosome 6 of three closely related Asian species of mice: Mus caroli, M. cervicolor, and M. cookii. The presence of flanking repeats suggested it arose by LINE-mediated retroduplication within their most recent common ancestor. A high degree of natural variation was observed in both Fv1 and Fv7 and, on top of positive selection at certain residues, insertions and deletions were present that changed the length of the reading frames. These genes exhibited a range of restriction phenotypes, with activities directed against gamma-, spuma-, and lentiviruses. It seems likely, at least in the case of M. caroli, that the observed gene duplication may expand the breadth of restriction beyond the capacity of Fv1 alone and that one or more such viruses have recently driven or continue to drive the evolution of the Fv1 and Fv7 genes.
Klíčová slova:
Multiple alignment calculation – Phylogenetic analysis – Polymerase chain reaction – Retroviruses – Sequence alignment – Sequence analysis – Spleen – Viral evolution
Zdroje
1. Stoye JP. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat Rev Microbiol. 2012;10(6):395–406. Epub 2012/05/09. nrmicro2783 [pii] doi: 10.1038/nrmicro2783 22565131.
2. Malim MH, Bieniasz PD. HIV Restriction Factors and Mechanisms of Evasion. Cold Spring Harb Perspect Med. 2012;2(5):a006940. Epub 2012/05/04. doi: 10.1101/cshperspect.a006940 [pii]. 22553496; PubMed Central PMCID: PMC3331687.
3. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissler P, Sodroski J. The cytoplasmic body component TRIM5a restricts HIV-1 infection in Old World monkeys. Nature. 2004;427:848–53. doi: 10.1038/nature02343 14985764
4. Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418:646–50. doi: 10.1038/nature00939 12167863
5. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011;474:654–7. Epub 2011/05/27. nature10117 [pii] doi: 10.1038/nature10117 21613998.
6. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature. 2011;474(7353):658–61. Epub 2011/07/02. nature10195 [pii] doi: 10.1038/nature10195 21720370.
7. Neil SJD, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008;451:425–30. doi: 10.1038/nature06553 18200009
8. Rosa A, Chande A, ZiglioSantoni F, S., De Sanctis V, Bertorelli R, Goh SL, et al. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature. 2015;526:212–7. doi: 10.1038/nature15399 26416734
9. Usami Y, Wu Y, Göttlinger HG. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature. 2015;526:218–23. doi: 10.1038/nature15400 26416733
10. Malim MH, Emerman M. HIV-1 accessory proteins—ensuring viral survival in a hostile environment. Cell Host Microbe. 2008;3(6):388–98. Epub 2008/06/11. S1931-3128(08)00126-1 [pii] doi: 10.1016/j.chom.2008.04.008 18541215.
11. Zheng YH, Jeang KT, Tokunaga K. Host restriction factors in retroviral infection: promises in virus-host interaction. Retrovirology. 2012;9:112. Epub 2012/12/21. doi: 10.1186/1742-4690-9-112 23254112; PubMed Central PMCID: PMC3549941.
12. Lilly F. Fv-2: Identification and location of a second gene governing the spleen focus response to Friend leukemia virus in mice. J Natl Cancer Inst. 1970;45:163–9. 5449211
13. Pincus T, Rowe WP, Lilly F. A major genetic locus affecting resistance to infection with murine leukemia viruses. II. Apparent identity to a major locus described for resistance to Friend murine leukemia virus. J Exp Med. 1971;133:1234–41. doi: 10.1084/jem.133.6.1234 4325133
14. Hartley JW, Rowe WP, Huebner RJ. Host-range restrictions of murine leukemia viruses in mouse embryo cell cultures. J Virol. 1970;5:221–5. 4317349
15. Rowe WP. Studies of genetic transmission of murine leukemia virus by AKR mice I. Crosses with Fv-1n strains of mice. J Exp Med. 1972;136:1272–85. doi: 10.1084/jem.136.5.1272 4343244
16. Rowe WP, Hartley JW. Studies of genetic transmission of murine leukemia virus by AKR mice II Crosses with Fv-1b strains of mice. J Exp Med. 1972;136:1286–301. doi: 10.1084/jem.136.5.1286 4343245
17. Yap MW, Colbeck E, Ellis SA, Stoye JP. Evolution of the retroviral restriction gene Fv1: inhibition of non-MLV retroviruses. PLoS Pathog. 2014;10(3):e1003968. Epub 2014/03/08. doi: 10.1371/journal.ppat.1003968 24603659; PubMed Central PMCID: PMC3948346.
18. Best S, Le Tissier P, Towers G, Stoye JP. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature. 1996;382:826–9. doi: 10.1038/382826a0 8752279
19. Bénit L, de Parseval N, Casella J-F, Callebaut I, Cordonnier A, Heidmann T. Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and a gag coding sequence closely related to the Fv1 restriction gene. J Virol. 1997;71:5652–7. 9188643
20. Best S, Le Tissier PR, Stoye JP. Endogenous retroviruses and the evolution of resistance to retroviral infection. Trends Microbiol. 1997;4:313–8.
21. Malfavon-Borja R, Feschotte C. Fighting fire with fire: endogenous retrovirus envelopes as restriction factors. J Virol. 2015;89(8):4047–50. Epub 2015/02/06. doi: 10.1128/JVI.03653-14 25653437; PubMed Central PMCID: PMC4442362.
22. Kozak CA, Chakraborti A. Single amino acid changes in the murine leukemia virus capsid protein gene define the target for Fv1 resistance. Virology. 1996;225:300–6. doi: 10.1006/viro.1996.0604 8918916
23. Jolicoeur P, Baltimore D. Effect of Fv-1 gene product on proviral DNA formation and integration in cells infected with murine leukemia viruses. Cell. 1976;73:2236–40.
24. Jolicoeur P, Rassart E. Effect of Fv-1 gene product on synthesis of linear and supercoiled viral DNA in cells infected with murine leukemia virus. J Virol. 1980;33(1):183–95. 6245227
25. Pryciak PM, Varmus HE. Fv-1 restriction and its effects on murine leukemia virus integration in vivo and in vitro. J Virol. 1992;66:5959–66. 1326652
26. Goldstone DC, Walker PA, Calder LJ, Coombs PJ, Kirkpatrick J, Ball NJ, et al. Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice. Proc Natl Acad Sci U S A. 2014;111(26):9609–14. doi: 10.1073/pnas.1402448111 24979782; PubMed Central PMCID: PMC4084454.
27. Bishop KN, Bock M, Towers G, Stoye JP. Identification of the regions of Fv1 necessary for MLV restriction. J Virol. 2001;75:5182–8. doi: 10.1128/JVI.75.11.5182-5188.2001 11333899
28. Sanz-Ramos M, Stoye JP. Capsid-binding retrovirus restriction factors: discovery, restriction specificity and implications for the development of novel therapeutics. J Gen Virol. 2013;94:2587–98. doi: 10.1099/vir.0.058180-0 24026671
29. Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI, Yeager M. Hexagonal assembly of a restricting TRIM5a protein. Proc Natl Acad Sci U S A. 2011;108:534–9. doi: 10.1073/pnas.1013426108 21187419
30. Li YL, Chandrasekaran V, Carter SD, Woodward CL, Christensen DE, Dryden KA, et al. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. Elife. 2016;5. doi: 10.7554/eLife.16269 27253068.
31. Skorupka KA, Roganowicz MD, Christensen DE, Wan Y, Pornillos O, Ganser-Pornillos BK. Hierarchical assembly governs TRIM5alpha recognition of HIV-1 and retroviral capsids. Sci Adv. 2019;5(11):eaaw3631. Epub 2019/12/07. doi: 10.1126/sciadv.aaw3631 31807695; PubMed Central PMCID: PMC6881174.
32. Johnson WE. Origins and evolutionary consequences of ancient endogenous retroviruses. Nature Reviews Microbiology. 2019; doi: 10.1038/s41579-019-0189-2 30962577
33. Sawyer SL, Wu LI, Emerman M, Malik HS. Positive selection of primate TRIM5a identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci U S A. 2005;102(8):2832–7. doi: 10.1073/pnas.0409853102 15689398
34. Kaiser SM, Malik HS, Emerman M. Restriction of an extinct retrovirus by the human TRIM5a antiviral protein. Science. 2007;316:1756–8. doi: 10.1126/science.1140579 17588933
35. McCarthy KR, Kirmaier A, Autissier P, Johnson WE. Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface. PLoS Pathog. 2015;11(8):e1005085. doi: 10.1371/journal.ppat.1005085 26291613; PubMed Central PMCID: PMC4546234.
36. Yan Y, Buckler-White A, Wollenberg K, Kozak CA. Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus. Proc Natl Acad Sci U S A. 2009;106:3259–63. doi: 10.1073/pnas.0900181106 19221034
37. Boso G, Buckler-White A, Kozak CA. Ancient evolutionary oeigin and positive selection of the retroviral restriction factor Fv1 in muroid rodents. J Virol. 2018;92:e00850–18. doi: 10.1128/JVI.00850-18 29976659
38. Young GR, Yap MW, Michaux JR, Steppan SJ, Stoye JP. Evolutionary journey of the retroviral restriction gene Fv1. Proc Natl Acad Sci U S A. 2018;115(40):10130–5. Epub 2018/09/19. doi: 10.1073/pnas.1808516115 30224488; PubMed Central PMCID: PMC6176592.
39. Lilue J, Doran AG, Fiddes IT, Abrudan M, Armstrong J, Bennett R, et al. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat Genet. 2018;50(11):1574–83. Epub 2018/10/03. doi: 10.1038/s41588-018-0223-8 30275530; PubMed Central PMCID: PMC6205630.
40. Steppan SJ, Schenk JJ. Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. PLoS One. 2017;12(8):e0183070. doi: 10.1371/journal.pone.0183070 28813483; PubMed Central PMCID: PMC5559066.
41. Suzuki H, Aplin KP. Phylogeny and biogeography of the genus Mus in Eurasia. In: Macholan M, Baird SJE, Munclinger P, Pialek J, editors Evolution of the House Mouse Cambridge University Press Chapter 2, pp35–64. 2012.
42. Rudra M, Chatterjee B, Bahadur M. Phylogenetic relationship and time of divergence of Mus terricolor with reference to other Mus species. J Genet. 2016;95(2):399–409. Epub 2016/06/29. doi: 10.1007/s12041-016-0654-x 27350685.
43. Meyerson NR, Sawyer SL. Two-stepping through time: mammals and viruses. Trends Microbiol. 2011;19:286–94. doi: 10.1016/j.tim.2011.03.006 21531564
44. Consortium F, the RP, Clst, Forrest AR, Kawaji H, Rehli M, et al. A promoter-level mammalian expression atlas. Nature. 2014;507(7493):462–70. Epub 2014/03/29. doi: 10.1038/nature13182 24670764; PubMed Central PMCID: PMC4529748.
45. Nellaker C, Keane TM, Yalcin B, Wong K, Agam A, Belgard TG, et al. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol. 2012;13(6):R45. Epub 2012/06/19. doi: 10.1186/gb-2012-13-6-r45 22703977; PubMed Central PMCID: PMC3446317.
46. Jin Y, McDonald RT, Lerman K, Mandel MA, Carroll S, Liberman MY, et al. Automated recognition of malignancy mentions in biomedical literature. BMC Bioinformatics. 2006;7:492. Epub 2006/11/09. doi: 10.1186/1471-2105-7-492 17090325; PubMed Central PMCID: PMC1657036.
47. Li W, Yap MW, Voss V, Stoye JP. Expression levels of Fv1: effects on retroviral restriction specificities. Retrovirology. 2016;13(1):42. Epub 2016/06/28. doi: 10.1186/s12977-016-0276-7 27342974; PubMed Central PMCID: PMC4921018.
48. Thybert D, Roller M, Navarro FCP, Fiddes I, Streeter I, Feig C, et al. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes. Genome Res. 2018;28(4):448–59. Epub 2018/03/23. doi: 10.1101/gr.234096.117 29563166; PubMed Central PMCID: PMC5880236.
49. Wong ES, Thybert D, Schmitt BM, Stefflova K, Odom DT, Flicek P. Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals. Genome Res. 2015;25(2):167–78. Epub 2014/11/15. doi: 10.1101/gr.177840.114 25394363; PubMed Central PMCID: PMC4315291.
50. Berthoux L, Sebastian S, Sayah DM, Luban J. Disruption of human TRIM5alpha antiviral activity by nonhuman primate orthologues. J Virol. 2005;79(12):7883–8. Epub 2005/05/28. doi: 10.1128/JVI.79.12.7883-7888.2005 15919943; PubMed Central PMCID: PMC1143641.
51. Yang L, Emerman M, Malik HS, McLaughlin RN Jr. Retrocopying expands the functional repertoire of APOBEC3 antiviral proteins in primates. bioRxiv preprint 2020;https://doi.org/10.1101/2020.02.12.944629doi:.
52. Kazazian HH Jr. Processed pseudogene insertions in somatic cells. Mob DNA. 2014;5:20. Epub 2014/09/04. doi: 10.1186/1759-8753-5-20 25184004; PubMed Central PMCID: PMC4151081.
53. Campbell EM, Perez O, Anderson JL, Hope TJ. Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5a. J Cell Biol. 2008;180:549–61. doi: 10.1083/jcb.200706154 18250195
54. Ge SX. Exploratory bioinformatics investigation reveals importance of "junk" DNA in early embryo development. BMC Genomics. 2017;18(1):200. Epub 2017/02/25. doi: 10.1186/s12864-017-3566-0 28231763; PubMed Central PMCID: PMC5324221.
55. Harr B, Karakoc E, Neme R, Teschke M, Pfeifle C, Pezer Z, et al. Genomic resources for wild populations of the house mouse, Mus musculus and its close relative Mus spretus. Sci Data. 2016;3:160075. Epub 2016/09/14. doi: 10.1038/sdata.2016.75 27622383; PubMed Central PMCID: PMC5020872.
56. Hayward A, Cornwallis CK, Jern P. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proc Natl Acad Sci U S A. 2015;112(2):464–9. Epub 2014/12/24. doi: 10.1073/pnas.1414980112 25535393; PubMed Central PMCID: PMC4299219.
57. Boso G, Shaffer E, Liu Q, Cavanna K, Buckler-White A, Kozak CA. Evolution of the rodent Trim5 cluster is marked by divergent paralogous expansions and independent acquisitions of TrimCyp fusions. Sci Rep. 2019;9(1):11263. Epub 2019/08/04. doi: 10.1038/s41598-019-47720-5 31375773; PubMed Central PMCID: PMC6677749.
58. Simmons G, Clarke D, McKee J, Young P, Meers J. Discovery of a novel retrovirus sequence in an Australian native rodent (Melomys burtoni): a putative link between gibbon ape leukemia virus and koala retrovirus. PLoS One. 2014;9(9):e106954. Epub 2014/09/25. doi: 10.1371/journal.pone.0106954 25251014; PubMed Central PMCID: PMC4175076.
59. Bock M, Bishop KN, Towers G, Stoye JP. Use of a transient assay for studying the genetic determinants of Fv1 restriction. J Virol. 2000;74:7422–30. doi: 10.1128/jvi.74.16.7422-7430.2000 10906195
60. Yap MW, Nisole S, Lynch C, Stoye JP. Trim5a protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci U S A. 2004;101:10786–91. doi: 10.1073/pnas.0402876101 15249690
61. Goldstone DC, Yap MW, Robertson LE, Haire LF, Taylor WR, Katzourakis A, et al. Structural and functional analysis of prehistoric lentiviruses uncovers an ancient molecular interface. Cell Host Microbe. 2010;8(3):248–59. doi: 10.1016/j.chom.2010.08.006 20833376.
62. Kemler I, Azmi I, Poeschla EM. The critical role of proximal gag sequences in feline immunodeficiency virus genome encapsidation. Virology. 2004;327(1):111–20. Epub 2004/08/26. doi: 10.1016/j.virol.2004.06.014 15327902.
63. Yap MW, Lindemann D, Stanke N, Reh J, Westphal D, Hanenberg H, et al. Restriction of foamy viruses by primate Trim5alpha. J Virol. 2008;82(11):5429–39. doi: 10.1128/JVI.02462-07 18367529.
64. Bindels DS, Haarbosch L, van Weeren L, Postma M, Wiese KE, Mastop M, et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nature methods. 2017;14(1):53–6. Epub 2016/11/22. doi: 10.1038/nmeth.4074 27869816.
65. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66. Epub 2002/07/24. doi: 10.1093/nar/gkf436 12136088; PubMed Central PMCID: PMC135756.
66. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. Epub 2013/01/19. doi: 10.1093/molbev/mst010 23329690; PubMed Central PMCID: PMC3603318.
67. Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. Epub 2010/03/13. doi: 10.1371/journal.pone.0009490 20224823; PubMed Central PMCID: PMC2835736.
68. Okonechnikov K, Golosova O, Fursov M, team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166–7. Epub 2012/03/01. doi: 10.1093/bioinformatics/bts091 22368248.
69. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. Epub 2014/04/04. doi: 10.1093/bioinformatics/btu170 24695404; PubMed Central PMCID: PMC4103590.
70. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15. Epub 2019/08/04. doi: 10.1038/s41587-019-0201-4 31375807.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 6
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Raději si zajděte na oční! Jak souvisí citlivost zraku s rozvojem demence?
- Co způsobuje pooperační infekce? Na vině může být i naše vlastní mikrobiota
- Čeká nás průlom v diagnostice karcinomu pankreatu?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
Nejčtenější v tomto čísle
- AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization
- Osteocalcin promotes bone mineralization but is not a hormone
- Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis