The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae
Autoři:
Emma B. Alme aff001; Erica Stevenson aff003; Nevan J. Krogan aff003; Danielle L. Swaney aff003; David P. Toczyski aff001
Působiště autorů:
Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
aff001; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
aff002; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
aff003; California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
aff004; J. David Gladstone Institutes, San Francisco, California, United States of America
aff005
Vyšlo v časopise:
The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008840
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008840
Souhrn
The S. cerevisiae ISR1 gene encodes a putative kinase with no ascribed function. Here, we show that Isr1 acts as a negative regulator of the highly-conserved hexosamine biosynthesis pathway (HBP), which converts glucose into uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the carbohydrate precursor to protein glycosylation, GPI-anchor formation, and chitin biosynthesis. Overexpression of ISR1 is lethal and, at lower levels, causes sensitivity to tunicamycin and resistance to calcofluor white, implying impaired protein glycosylation and reduced chitin deposition. Gfa1 is the first enzyme in the HBP and is conserved from bacteria and yeast to humans. The lethality caused by ISR1 overexpression is rescued by co-overexpression of GFA1 or exogenous glucosamine, which bypasses GFA1’s essential function. Gfa1 is phosphorylated in an Isr1-dependent fashion and mutation of Isr1-dependent sites ameliorates the lethality associated with ISR1 overexpression. Isr1 contains a phosphodegron that is phosphorylated by Pho85 and subsequently ubiquitinated by the SCF-Cdc4 complex, largely confining Isr1 protein levels to the time of bud emergence. Mutation of this phosphodegron stabilizes Isr1 and recapitulates the overexpression phenotypes. As Pho85 is a cell cycle and nutrient responsive kinase, this tight regulation of Isr1 may serve to dynamically regulate flux through the HBP and modulate how the cell’s energy resources are converted into structural carbohydrates in response to changing cellular needs.
Klíčová slova:
Biosynthesis – Cell cycle and cell division – Cell walls – Galactose – Glucose – Hyperexpression techniques – chitin – Phosphorylation
Zdroje
1. Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, et al. Global analysis of protein phosphorylation in yeast. Nature. 2005;438: 679–684. doi: 10.1038/nature04187 16319894
2. Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci. 2002;27: 514–520. doi: 10.1016/s0968-0004(02)02179-5 12368087
3. Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, et al. Functional Organization of the S. cerevisiae Phosphorylation Network. Cell. 2009;136: 952–963. doi: 10.1016/j.cell.2008.12.039 19269370
4. Sharma K, D’Souza RCJ, Tyanova S, Schaab C, Wiśniewski JR, Cox J, et al. Ultradeep Human Phosphoproteome Reveals a Distinct Regulatory Nature of Tyr and Ser/Thr-Based Signaling. Cell Rep. 2014;8: 1583–1594. doi: 10.1016/j.celrep.2014.07.036 25159151
5. Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G. Structural and Functional Diversity of the Microbial Kinome. PLOS Biol. 2007;5: e17. doi: 10.1371/journal.pbio.0050017 17355172
6. Miyahara K, Hirata D, Miyakawa T. Functional Interaction of Isr1, a Predicted Protein Kinase, with the Pkc1 Pathway in Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 1998;62: 1376–1380. doi: 10.1271/bbb.62.1376 9720220
7. Levin DE. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway. Genetics. 2011;189: 1145–1175. doi: 10.1534/genetics.111.128264 22174182
8. Mehlgarten C, Zink S, Rutter J, Schaffrath R. Dosage suppression of the Kluyveromyces lactis zymocin by Saccharomyces cerevisiae ISR1 and UGP1. FEMS Yeast Res. 2007;7: 722–730. doi: 10.1111/j.1567-1364.2007.00216.x 17367514
9. Jablonowski D, Fichtner L, Martin VJ, Klassen R, Meinhardt F, Stark MJR, et al. Saccharomyces cerevisiae cell wall chitin, the Kluyveromyces lactis zymocin receptor. Yeast. 2001;18: 1285–1299. doi: 10.1002/yea.776 11571753
10. Orlean P. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall. Genetics. 2012;192: 775–818. doi: 10.1534/genetics.112.144485 23135325
11. Larkin A, Imperiali B. The Expanding Horizons of Asparagine-Linked Glycosylation. Biochemistry. 2011;50: 4411–4426. doi: 10.1021/bi200346n 21506607
12. Schekman R, Brawley V. Localized deposition of chitin on the yeast cell surface in response to mating pheromone. Proc Natl Acad Sci U S A. 1979;76: 645–649. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383005/ 16592617
13. Lagorce A, Berre-Anton VL, Aguilar-Uscanga B, Martin-Yken H, Dagkessamanskaia A, François J. Involvement of GFA1, which encodes glutamine–fructose-6-phosphate amidotransferase, in the activation of the chitin synthesis pathway in response to cell-wall defects in Saccharomyces cerevisiae. Eur J Biochem. 2002;269: 1697–1707. doi: 10.1046/j.1432-1327.2002.02814.x 11895440
14. Lesage G, Bussey H. Cell Wall Assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006;70: 317–343. doi: 10.1128/MMBR.00038-05 16760306
15. Bulik DA, Olczak M, Lucero HA, Osmond BC, Robbins PW, Specht CA. Chitin Synthesis in Saccharomyces cerevisiae in Response to Supplementation of Growth Medium with Glucosamine and Cell Wall Stress. Eukaryot Cell. 2003;2: 886–900. doi: 10.1128/ec.2.5.886-900.2003 14555471
16. Valdivia RH, Schekman R. The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc Natl Acad Sci. 2003;100: 10287. doi: 10.1073/pnas.1834246100 12928491
17. Milewski S. Glucosamine-6-phosphate synthase—the multi-facets enzyme. Biochim Biophys Acta BBA—Protein Struct Mol Enzymol. 2002;1597: 173–192. doi: 10.1016/S0167-4838(02)00318-7
18. Milewski S, Gabriel I, Olchowy J. Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast. 2006;23: 1–14. doi: 10.1002/yea.1337 16408321
19. Zibrova D, Vandermoere F, Göransson O, Peggie M, Mariño KV, Knierim A, et al. GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem J. 2017;474: 983–1001. doi: 10.1042/BCJ20160980 28008135
20. Graack HR, Cinque U, Kress H. Functional regulation of glutamine:fructose-6-phosphate aminotransferase 1 (GFAT1) of Drosophila melanogaster in a UDP-N-acetylglucosamine and cAMP-dependent manner. Biochem J. 2001;360: 401–412. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222241/ 11716769
21. Zheng J, Khalil M, Cannon JF. Glc7p Protein Phosphatase Inhibits Expression of Glutamine-Fructose-6-phosphate Transaminase from GFA1. J Biol Chem. 2000;275: 18070–18078. doi: 10.1074/jbc.M000918200 10764753
22. Milewski S, Kuszczak D, Jedrzejczak R, Smith RJ, Brown AJP, Gooday GW. Oligomeric Structure and Regulation of Candida albicans Glucosamine-6-phosphate Synthase. J Biol Chem. 1999;274: 4000–4008. doi: 10.1074/jbc.274.7.4000 9933591
23. Chang Q, Su K, Baker JR, Yang X, Paterson AJ, Kudlow JE. Phosphorylation of Human Glutamine:Fructose-6-phosphate Amidotransferase by cAMP-dependent Protein Kinase at Serine 205 Blocks the Enzyme Activity. J Biol Chem. 2000;275: 21981–21987. doi: 10.1074/jbc.M001049200 10806197
24. Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, et al. Global analysis of protein expression in yeast. Nature. 2003;425: 737–741. doi: 10.1038/nature02046 14562106
25. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002;418: 387–391. doi: 10.1038/nature00935 12140549
26. Holbein S, Wengi A, Decourty L, Freimoser FM, Jacquier A, Dichtl B. Cordycepin interferes with 3’ end formation in yeast independently of its potential to terminate RNA chain elongation. RNA. 2009;15: 837–849. doi: 10.1261/rna.1458909 19324962
27. Yoo J, Mashalidis EH, Kuk ACY, Yamamoto K, Kaeser B, Ichikawa S, et al. GlcNAc-1-P-transferase-tunicamycin complex structure reveals basis for inhibition of N-glycosylation. Nat Struct Mol Biol. 2018;25: 217–224. doi: 10.1038/s41594-018-0031-y 29459785
28. Ben-Shitrit T, Yosef N, Shemesh K, Sharan R, Ruppin E, Kupiec M. Systematic identification of gene annotation errors in the widely used yeast mutation collections. Nat Methods. 2012;9: 373–378. doi: 10.1038/nmeth.1890 22306811
29. Barnes G, Hansen WJ, Holcomb CL, Rine J. Asparagine-linked glycosylation in Saccharomyces cerevisiae: genetic analysis of an early step. Mol Cell Biol. 1984;4: 2381–2388. doi: 10.1128/mcb.4.11.2381 6096695
30. Ram AFJ, Klis FM. Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc. 2006;1: 2253–2256. doi: 10.1038/nprot.2006.397 17406464
31. Ram AFJ, Wolters A, Hoopen RT, Klis FM. A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast. 1994;10: 1019–1030. doi: 10.1002/yea.320100804 7992502
32. Roncero C, Valdivieso MH, Ribas JC, Durán A. Isolation and characterization of Saccharomyces cerevisiae mutants resistant to Calcofluor white. J Bacteriol. 1988;170: 1950–1954. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC211056/ 3280554
33. Sobering AK, Watanabe R, Romeo MJ, Yan BC, Specht CA, Orlean P, et al. Yeast Ras Regulates the Complex that Catalyzes the First Step in GPI-Anchor Biosynthesis at the ER. Cell. 2004;117: 637–648. doi: 10.1016/j.cell.2004.05.003 15163411
34. Mitchell AP. The GLN1 Locus of SACCHAROMYCES CEREVISIAE Encodes Glutamine Synthetase. Genetics. 1985;111: 243–258. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1202641/ 2865193
35. Watzele G, Tanner W. Cloning of the glutamine:fructose-6-phosphate amidotransferase gene from yeast. Pheromonal regulation of its transcription. J Biol Chem. 1989;264: 8753–8758. Available: http://www.jbc.org/content/264/15/8753 2656689
36. Gomez A, Perez J, Reyes A, Duran A, Roncero C. Slt2 and Rim101 Contribute Independently to the Correct Assembly of the Chitin Ring at the Budding Yeast Neck in Saccharomyces cerevisiae. Eukaryot Cell. 2009;8: 1449–1459. doi: 10.1128/EC.00153-09 19633265
37. Eguchi S, Oshiro N, Miyamoto T, Yoshino K, Okamoto S, Ono T, et al. AMP-activated protein kinase phosphorylates glutamine : fructose-6-phosphate amidotransferase 1 at Ser243 to modulate its enzymatic activity. Genes Cells. 2009;14: 179–189. doi: 10.1111/j.1365-2443.2008.01260.x 19170765
38. Frisa PS, Sonneborn DR. Developmentally regulated interconversions between end product-inhibitable and noninhibitable forms of a first pathway-specific enzyme activity can be mimicked in vitro by protein dephosphorylation-phosphorylation reactions. Proc Natl Acad Sci. 1982;79: 6289–6293. doi: 10.1073/pnas.79.20.6289 6959119
39. Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, et al. A Global Protein Kinase and Phosphatase Interaction Network in Yeast. Science. 2010;328: 1043–1046. doi: 10.1126/science.1176495 20489023
40. Holt LJ, Tuch BB, Villén J, Johnson AD, Gygi SP, Morgan DO. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science. 2009;325: 1682. doi: 10.1126/science.1172867 19779198
41. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, et al. Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Mol Biol Cell. 1998;9: 3273–3297. doi: 10.1091/mbc.9.12.3273 9843569
42. Mark KG, Simonetta M, Maiolica A, Seller CA, Toczyski DP. Ubiquitin Ligase Trapping Identifies an SCFSaf1 Pathway Targeting Unprocessed Vacuolar/Lysosomal Proteins. Mol Cell. 2014;53: 148–161. doi: 10.1016/j.molcel.2013.12.003 24389104
43. Willems AR, Schwab M, Tyers M. A hitchhiker’s guide to the cullin ubiquitin ligases: SCF and its kin. Biochim Biophys Acta BBA—Mol Cell Res. 2004;1695: 133–170. doi: 10.1016/j.bbamcr.2004.09.027 15571813
44. Tang X, Orlicky S, Liu Q, Willems A, Sicheri F, Tyers M. Genome-Wide Surveys for Phosphorylation-Dependent Substrates of SCF Ubiquitin Ligases. Methods in Enzymology. Academic Press; 2005. pp. 433–458. doi: 10.1016/S0076-6879(05)99030-7
45. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. F-Box Proteins Are Receptors that Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex. Cell. 1997;91: 209–219. doi: 10.1016/s0092-8674(00)80403-1 9346238
46. Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP. Structure of a Fbw7-Skp1-Cyclin E Complex: Multisite-Phosphorylated Substrate Recognition by SCF Ubiquitin Ligases. Mol Cell. 2007;26: 131–143. doi: 10.1016/j.molcel.2007.02.022 17434132
47. Lyons NA, Fonslow BR, Diedrich JK, Yates JR, Morgan DO. Sequential Primed Kinases Create a Damage-Responsive Phosphodegron on Eco1. Nat Struct Mol Biol. 2013;20: 194–201. doi: 10.1038/nsmb.2478 23314252
48. Dephoure N, Howson RW, Blethrow JD, Shokat KM, O’Shea EK. Combining chemical genetics and proteomics to identify protein kinase substrates. Proc Natl Acad Sci. 2005;102: 17940–17945. doi: 10.1073/pnas.0509080102 16330754
49. Carroll AS, Bishop AC, DeRisi JL, Shokat KM, O’Shea EK. Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc Natl Acad Sci U S A. 2001;98: 12578–12583. doi: 10.1073/pnas.211195798 11675494
50. Huang D, Friesen H, Andrews B. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol Microbiol. 2007;66: 303–314. doi: 10.1111/j.1365-2958.2007.05914.x 17850263
51. Espinoza FH, Ogas J, Herskowitz I, Morgan DO. Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85. Science. 1994;266: 1388–1391. doi: 10.1126/science.7973730 7973730
52. Schneider KR, Smith RL, O’Shea EK. Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81. Science. 1994;266: 122–126. doi: 10.1126/science.7939631 7939631
53. Huang D, Moffat J, Wilson WA, Moore L, Cheng C, Roach PJ, et al. Cyclin Partners Determine Pho85 Protein Kinase Substrate Specificity In Vitro and In Vivo: Control of Glycogen Biosynthesis by Pcl8 and Pcl10. Mol Cell Biol. 1998;18: 3289–3299. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC108910/ 9584169
54. Imai K, Noda Y, Adachi H, Yoda K. A Novel Endoplasmic Reticulum Membrane Protein Rcr1 Regulates Chitin Deposition in the Cell Wall of Saccharomyces cerevisiae. J Biol Chem. 2005;280: 8275–8284. doi: 10.1074/jbc.M409428200 15590673
55. Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, et al. Mapping Pathways and Phenotypes by Systematic Gene Overexpression. Mol Cell. 2006;21: 319–330. doi: 10.1016/j.molcel.2005.12.011 16455487
56. Levin DE. Cell Wall Integrity Signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2005;69: 262–291. doi: 10.1128/MMBR.69.2.262-291.2005 15944456
57. Bandyopadhyay S, Mehta M, Kuo D, Sung M-K, Chuang R, Jaehnig EJ, et al. Rewiring of Genetic Networks in Response to DNA Damage. Science. 2010;330: 1385–1389. doi: 10.1126/science.1195618 21127252
58. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, et al. A global genetic interaction network maps a wiring diagram of cellular function. Science. 2016;353: aaf1420. doi: 10.1126/science.aaf1420 27708008
59. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47: D442–D450. doi: 10.1093/nar/gky1106 30395289
60. Meier F, Brunner A-D, Koch S, Koch H, Lubeck M, Krause M, et al. Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics MCP. 2018;17: 2534–2545. doi: 10.1074/mcp.TIR118.000900 30385480
61. Meier F, Brunner A-D, Frank M, Ha A, Voytik E, Kaspar-Schoenefeld S, et al. Parallel accumulation–serial fragmentation combined with data-independent acquisition (diaPASEF): Bottom-up proteomics with near optimal ion usage. bioRxiv. 2019; 656207. doi: 10.1101/656207
62. Choi M, Chang C-Y, Clough T, Broudy D, Killeen T, MacLean B, et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinforma Oxf Engl. 2014;30: 2524–2526. doi: 10.1093/bioinformatics/btu305 24794931
63. Nolte H, MacVicar TD, Tellkamp F, Krüger M. Instant Clue: A Software Suite for Interactive Data Visualization and Analysis. Sci Rep. 2018;8. doi: 10.1038/s41598-018-31154-6 30140043
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 6
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- „Jednohubky“ z klinického výzkumu – 2024/44
Nejčtenější v tomto čísle
- Osteocalcin promotes bone mineralization but is not a hormone
- AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization
- Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis