Exclusive breastfeeding can attenuate body-mass-index increase among genetically susceptible children: A longitudinal study from the ALSPAC cohort
Autoři:
Yanyan Wu aff001; Stephen Lye aff002; Cindy-Lee Dennis aff003; Laurent Briollais aff002
Působiště autorů:
Office of Public Health Studies, Myron B. Thompson School of Social Work, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United States of America
aff001; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
aff002; Lawrence S Bloomberg Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada
aff003; Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
aff004; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
aff005
Vyšlo v časopise:
Exclusive breastfeeding can attenuate body-mass-index increase among genetically susceptible children: A longitudinal study from the ALSPAC cohort. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008790
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008790
Souhrn
Recent discoveries from large-scale genome-wide association studies (GWASs) explain a larger proportion of the genetic variability to BMI and obesity. The genetic risk associated with BMI and obesity can be assessed by an obesity-specific genetic risk score (GRS) constructed from genome-wide significant genetic variants. The aim of our study is to examine whether the duration and exclusivity of breastfeeding can attenuate BMI increase during childhood and adolescence due to genetic risks. A total sample of 5,266 children (2,690 boys and 2,576 girls) from the Avon Longitudinal Study of Parents and Children (ALSPAC) was used for the analysis. We evaluated the role of breastfeeding (exclusivity and duration) in modulating BMI increase attributed to the GRS from birth to 18 years of age. The GRS was composed of 69 variants associated with adult BMI and 25 non-overlapping SNPs associated with pediatric BMI. In the high genetic susceptible group (upper GRS quartile), exclusive breastfeeding (EBF) to 5 months reduces BMI by 1.14 kg/m2 (95% CI, 0.37 to 1.91, p = 0.0037) in 18-year-old boys, which compensates a 3.9-decile GRS increase. In 18-year-old girls, EBF to 5 months decreases BMI by 1.53 kg/m2 (95% CI, 0.76 to 2.29, p<0.0001), which compensates a 7.0-decile GRS increase. EBF acts early in life by delaying the age at adiposity peak and at adiposity rebound. EBF to 3 months or non-exclusive breastfeeding was associated with a significantly diminished impact on reducing BMI growth during childhood. EBF influences early life growth and development and thus may play a critical role in preventing overweight and obesity among children at high-risk due to genetic factors.
Klíčová slova:
Body Mass Index – Breast feeding – Human genetics – Childhood obesity – Children – Obesity – Pediatrics – Pregnancy
Zdroje
1. Barker DJ. Developmental origins of adult health and disease. Journal of epidemiology and community health. 2004;58(2):114–5.
2. World Health Organization. Breastfeeding [https://www.who.int/topics/breastfeeding/en/.
3. Harder T, Bergmann R, Kallischnigg G, Plagemann A. Duration of breastfeeding and risk of overweight: a meta-analysis. Am J Epidemiol. 2005;162(5):397–403.
4. Rito AI, Buoncristiano M, Spinelli A, Salanave B, Kunesova M, Hejgaard T, et al. Association between Characteristics at Birth, Breastfeeding and Obesity in 22 Countries: The WHO European Childhood Obesity Surveillance Initiative—COSI 2015/2017. Obesity facts. 2019;12(2):226–43.
5. Wu YY, Lye S, Briollais L. The Role of Early-Life Growth Development, FTO Gene and Exclusive Breastfeeding on Child BMI Trajectories. Genetic Epidemiology. 2016;40(7):671-.
6. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.
7. Boutinaud M, Jammes H. Potential uses of milk epithelial cells: a review. Reproduction, nutrition, development. 2002;42(2):133–47.
8. Chhabra R. miRNA and methylation: a multifaceted liaison. Chembiochem: a European journal of chemical biology. 2015;16(2):195–203.
9. Luque V, Closa-Monasterolo R, Escribano J, Ferre N. Early Programming by Protein Intake: The Effect of Protein on Adiposity Development and the Growth and Functionality of Vital Organs. Nutrition and metabolic insights. 2015;8(Suppl 1):49–56.
10. Song M, Zheng Y, Qi L, Hu FB, Chan AT, Giovannucci EL. Longitudinal Analysis of Genetic Susceptibility and BMI Throughout Adult Life. Diabetes. 2018;67(2):248–55.
11. Monnereau C, Vogelezang S, Kruithof CJ, Jaddoe VW, Felix JF. Associations of genetic risk scores based on adult adiposity pathways with childhood growth and adiposity measures. BMC genetics. 2016;17(1):120.
12. Warrington NM, Howe LD, Wu YY, Timpson NJ, Tilling K, Pennell CE, et al. Association of a Body Mass Index Genetic Risk Score with Growth throughout Childhood and Adolescence. Plos One. 2013;8(11).
13. Khera AV, Chaffin M, Wade KH, Zahid S, Brancale J, Xia R, et al. Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Cell. 2019;177(3):587–96.e9.
14. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19(9):581–90.
15. Avon Longitudinal Study of Parents and Children. Access data and samples [http://www.bristol.ac.uk/alspac/researchers/access/.
16. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort Profile: the ‘children of the 90s’—the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2013;42(1):111–27.
17. Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110.
18. Tyrrell J, Wood AR, Ames RM, Yaghootkar H, Beaumont RN, Jones SE, et al. Gene-obesogenic environment interactions in the UK Biobank study. Int J Epidemiol. 2017;46(2):559–75.
19. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9.
20. Fitzmaurice GM, Laird NM, Ware JH. Applied longitudinal analysis. 2nd ed. Hoboken, N.J.: Wiley; 2011. xxv, 701 p. p.
21. McDonald L. Tests for the General Linear Hypothesis Under the Multiple Design Multivariate Linear Model. The Annals of Statistics. 1975;3(2):461–6.
22. Efron B. Better bootstrap confidence intervals. Journal of the American Statistical Association. 1987;82: 171–85.
23. Viitasalo A, Schnurr TM, Pitkanen N, Hollensted M, Nielsen TRH, Pahkala K, et al. Genetic predisposition to higher body fat yet lower cardiometabolic risk in children and adolescents. Int J Obes (Lond). 2019;43(10):2007–16.
24. Justice AE, Chittoor G, Blanco E, Graff M, Wang Y, Albala C, et al. Genetic determinants of BMI from early childhood to adolescence: the Santiago Longitudinal Study. Pediatr Obes. 2019;14(3):e12479.
25. Li A, Robiou-du-Pont S, Anand SS, Morrison KM, McDonald SD, Atkinson SA, et al. Parental and child genetic contributions to obesity traits in early life based on 83 loci validated in adults: the FAMILY study. Pediatr Obes. 2018;13(3):133–40.
26. Steinsbekk S, Belsky D, Guzey IC, Wardle J, Wichstrom L. Polygenic Risk, Appetite Traits, and Weight Gain in Middle Childhood: A Longitudinal Study. JAMA Pediatr. 2016;170(2):e154472.
27. Elks CE, Heude B, de Zegher F, Barton SJ, Clement K, Inskip HM, et al. Associations between genetic obesity susceptibility and early postnatal fat and lean mass: an individual participant meta-analysis. JAMA Pediatr. 2014;168(12):1122–30.
28. Belsky DW, Moffitt TE, Houts R, Bennett GG, Biddle AK, Blumenthal JA, et al. Polygenic risk, rapid childhood growth, and the development of obesity: evidence from a 4-decade longitudinal study. Arch Pediatr Adolesc Med. 2012;166(6):515–21.
29. Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, et al. Acceleration of BMI in Early Childhood and Risk of Sustained Obesity. N Engl J Med. 2018;379(14):1303–12.
30. Rzehak P, Sausenthaler S, Koletzko S, Bauer CP, Schaaf B, von Berg A, et al. Period-specific growth, overweight and modification by breastfeeding in the GINI and LISA birth cohorts up to age 6 years. Eur J Epidemiol. 2009;24(8):449–67.
31. Rolland-Cachera MF, Deheeger M, Bellisle F, Sempe M, Guilloud-Bataille M, Patois E. Adiposity rebound in children: a simple indicator for predicting obesity. Am J Clin Nutr. 1984;39(1):129–35.
32. Thompson M, Pirkle C, Youkhana F, Wu Y. Gene-Obesogenic Environment Interactions on Body Mass Indices for Older Black and White Men and Women from the Health and Retirement Study. International Journal of Obesity. In press.
33. Helgeland O, Vaudel M, Juliusson PB, Lingaas Holmen O, Juodakis J, Bacelis J, et al. Genome-wide association study reveals dynamic role of genetic variation in infant and early childhood growth. Nat Commun. 2019;10(1):4448.
34. De Silva N, S S, AC A, U S, S D, Taal R, et al. Genetic architecture of early childhood growth phenotypes gives insights into their link with later obesity. bioRxiv. 2017;150516.
35. Couto Alves A, De Silva NMG, Karhunen V, Sovio U, Das S, Taal HR, et al. GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. Sci Adv. 2019;5(9):eaaw3095.
36. Melnik BC. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med. 2015;13:385.
37. Stuebe A. The risks of not breastfeeding for mothers and infants. Reviews in obstetrics & gynecology. 2009;2(4):222–31.
38. Rollins NC, Bhandari N, Hajeebhoy N, Horton S, Lutter CK, Martines JC, et al. Why invest, and what it will take to improve breastfeeding practices? Lancet. 2016;387(10017):491–504.
39. Heinig MJ, Nommsen LA, Peerson JM, Lonnerdal B, Dewey KG. Energy and protein intakes of breast-fed and formula-fed infants during the first year of life and their association with growth velocity: the DARLING Study. Am J Clin Nutr. 1993;58(2):152–61.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 6
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- Osteocalcin promotes bone mineralization but is not a hormone
- Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism
- Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape
- Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase