Alpha- and beta-adrenergic octopamine receptors in muscle and heart are required for Drosophila exercise adaptations
Autoři:
Alyson Sujkowski aff001; Anna Gretzinger aff002; Nicolette Soave aff001; Sokol V. Todi aff002; Robert Wessells aff001
Působiště autorů:
Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
aff001; Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
aff002
Vyšlo v časopise:
Alpha- and beta-adrenergic octopamine receptors in muscle and heart are required for Drosophila exercise adaptations. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008778
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008778
Souhrn
Endurance exercise has broadly protective effects across organisms, increasing metabolic fitness and reducing incidence of several age-related diseases. Drosophila has emerged as a useful model for studying changes induced by chronic endurance exercise, as exercising flies experience improvements to various aspects of fitness at the cellular, organ and organismal level. The activity of octopaminergic neurons is sufficient to induce the conserved cellular and physiological changes seen following endurance training. All 4 octopamine receptors are required in at least one target tissue, but only one, Octβ1R, is required for all of them. Here, we perform tissue- and adult-specific knockdown of alpha- and beta-adrenergic octopamine receptors in several target tissues. We find that reduced expression of Octβ1R in adult muscles abolishes exercise-induced improvements in endurance, climbing speed, flight, cardiac performance and fat-body catabolism in male Drosophila. Importantly, Octβ1R and OAMB expression in the heart is also required cell-nonautonomously for adaptations in other tissues, such as skeletal muscles in legs and adult fat body. These findings indicate that activation of distinct octopamine receptors in skeletal and cardiac muscle are required for Drosophila exercise adaptations, and suggest that cell non-autonomous factors downstream of octopaminergic activation play a key role.
Klíčová slova:
Cardiac muscles – Climbing – Drosophila melanogaster – Exercise – Fats – Heart – Myosins – RNA interference
Zdroje
1. Topp R, Fahlman M, Boardley D. Healthy aging: health promotion and disease prevention. Nurs Clin North Am. 2004;39(2):411–22. doi: 10.1016/j.cnur.2004.01.007 15159189.
2. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143–211. doi: 10.1002/cphy.c110025 23798298; PubMed Central PMCID: PMC4241367.
3. Strasser B. Physical activity in obesity and metabolic syndrome. Ann N Y Acad Sci. 2013;1281:141–59. doi: 10.1111/j.1749-6632.2012.06785.x 23167451; PubMed Central PMCID: PMC3715111.
4. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55(11):2895–905. doi: 10.1007/s00125-012-2677-z 22890825.
5. Sujkowski A, Bazzell B, Carpenter K, Arking R, Wessells RJ. Endurance exercise and selective breeding for longevity extend Drosophila healthspan by overlapping mechanisms. Aging (Albany NY). 2015;7(8):535–52. doi: 10.18632/aging.100789 26298685; PubMed Central PMCID: PMC4586100.
6. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports medicine. 2007;37(9):737–63. Epub 2007/08/29. 3791 [pii]. doi: 10.2165/00007256-200737090-00001 17722947.
7. Sujkowski A, Saunders S, Tinkerhess M, Piazza N, Jennens J, Healy L, et al. dFatp regulates nutrient distribution and long-term physiology in Drosophila. Aging cell. 2012;11(6):921–32. doi: 10.1111/j.1474-9726.2012.00864.x 22809097; PubMed Central PMCID: PMC3533766.
8. Sujkowski A, Ramesh D, Brockmann A, Wessells R. Octopamine Drives Endurance Exercise Adaptations in Drosophila. Cell reports. 2017;21(7):1809–23. doi: 10.1016/j.celrep.2017.10.065 29141215; PubMed Central PMCID: PMC5693351.
9. Damschroder D, Cobb T, Sujkowski A, Wessells R. Drosophila Endurance Training and Assessment and Its Effects on Systemic Adaptations. BioProtocols. 2017. doi: 10.21769/BioProtoc.3037
10. Mendez S, Watanabe L, Hill R, Owens M, Moraczewski J, Rowe GC, et al. The TreadWheel: A Novel Apparatus to Measure Genetic Variation in Response to Gently Induced Exercise for Drosophila. PLoS One. 2016;11(10):e0164706. doi: 10.1371/journal.pone.0164706 27736996; PubMed Central PMCID: PMC5063428.
11. Piazza N, Gosangi B, Devilla S, Arking R, Wessells R. Exercise-training in young Drosophila melanogaster reduces age-related decline in mobility and cardiac performance. PLoS One. 2009;4(6):e5886. Epub 2009/06/12. doi: 10.1371/journal.pone.0005886 19517023; PubMed Central PMCID: PMC2691613.
12. Tinkerhess MJ, Ginzberg S, Piazza N, Wessells RJ. Endurance training protocol and longitudinal performance assays for Drosophila melanogaster. J Vis Exp. 2012;(61). Epub 2012/04/05. doi: 10.3791/37863786 [pii]. 22472601; PubMed Central PMCID: PMC3460591.
13. Laker RC, Xu P, Ryall KA, Sujkowski A, Kenwood BM, Chain KH, et al. A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem. 2014;289(17):12005–15. doi: 10.1074/jbc.M113.530527 24644293; PubMed Central PMCID: PMC4002107.
14. Sujkowski A, Spierer AN, Rajagopalan T, Bazzell B, Safdar M, Imsirovic D, et al. Mito-nuclear interactions modify Drosophila exercise performance. Mitochondrion. 2019;47:188–205. doi: 10.1016/j.mito.2018.11.005 30408593.
15. Fluck M., Functional structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol. 2006;209(Pt 12):2239–48. doi: 10.1242/jeb.02149 16731801.
16. Han KA, Millar NS, Davis RL. A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J Neurosci. 1998;18(10):3650–8. doi: 10.1523/JNEUROSCI.18-10-03650.1998 9570796.
17. El-Kholy S, Stephano F, Li Y, Bhandari A, Fink C, Roeder T. Expression analysis of octopamine and tyramine receptors in Drosophila. Cell Tissue Res. 2015;361(3):669–84. doi: 10.1007/s00441-015-2137-4 25743690.
18. Hirashima A, Sukhanova M, Rauschenbach I. Genetic control of biogenic-amine systems in Drosophila under normal and stress conditions. Biochem Genet. 2000;38(5–6):167–80. 11091907.
19. Adamo SA, Linn CE, Hoy RR. The Role of Neurohormonal Octopamine during Fight or Flight Behavior in the Field Cricket Gryllus-Bimaculatus. Journal of Experimental Biology. 1995;198(8):1691–700. WOS:A1995RM22400007.
20. Orchard I, Ramirez JM, Lange AB. A Multifunctional Role for Octopamine in Locust Flight. Annual Review of Entomology. 1993;38:227–49. doi: 10.1146/annurev.en.38.010193.001303 WOS:A1993KF69700011.
21. Vanheusden MC, Vanderhorst DJ, Beenakkers AMT. Invitro Studies on Hormone-Stimulated Lipid Mobilization from Fat-Body and Interconversion of Hemolymph Lipoproteins of Locusta-Migratoria. Journal of Insect Physiology. 1984;30(8):685–&. doi: 10.1016/0022-1910(84)90054-4 WOS:A1984TG34500012.
22. Bukowiecki L, Lupien J, Follea N, Paradis A, Richard D, LeBlanc J. Mechanism of enhanced lipolysis in adipose tissue of exercise-trained rats. Am J Physiol. 1980;239(6):E422–9. doi: 10.1152/ajpendo.1980.239.6.E422 6255803.
23. Hedrington MS, Davis SN. Sexual Dimorphism in Glucose and Lipid Metabolism during Fasting, Hypoglycemia, and Exercise. Front Endocrinol (Lausanne). 2015;6:61. doi: 10.3389/fendo.2015.00061 25964778; PubMed Central PMCID: PMC4410598.
24. Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports medicine. 2008;38(5):401–23. doi: 10.2165/00007256-200838050-00004 18416594.
25. Shepherd JT. Circulatory response to exercise in health. Circulation. 1987;76(6 Pt 2):VI3–10. 3315298.
26. Tank AW, Lee Wong D. Peripheral and central effects of circulating catecholamines. Comprehensive Physiology. 2015;5(1):1–15. doi: 10.1002/cphy.c140007 25589262.
27. Ahles A, Engelhardt S. Polymorphic variants of adrenoceptors: pharmacology, physiology, and role in disease. Pharmacological reviews. 2014;66(3):598–637. doi: 10.1124/pr.113.008219 24928328.
28. Chick TW, Halperin AK, Gacek EM. The effect of antihypertensive medications on exercise performance: a review. Medicine and science in sports and exercise. 1988;20(5):447–54. 2904108.
29. Davis E, Loiacono R, Summers RJ. The rush to adrenaline: drugs in sport acting on the beta-adrenergic system. British journal of pharmacology. 2008;154(3):584–97. doi: 10.1038/bjp.2008.164 18500380; PubMed Central PMCID: PMC2439523.
30. Sujkowski A, Wessells R. Using Drosophila to Understand Biochemical and Behavioral Responses to Exercise. Exercise and sport sciences reviews. 2018;46(2):112–20. doi: 10.1249/JES.0000000000000139 29346165; PubMed Central PMCID: PMC5856617.
31. Sujkowski A, Wessells R. Drosphila Models of Cardiac Aging and Disease. In: Vaiserman A, Moskalev A, Pasyukova J, editors. Life Extension: Lessons from Drosophila. Healthy Ageing and Longevity. Switzerland: Springer; 2015. p. 127–50.
32. Kim JS, Ro SH, Kim M, Park HW, Semple IA, Park H, et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep. 2015;5:9502. Epub 2015/03/31. doi: 10.1038/srep09502 25819761; PubMed Central PMCID: PMC4377584.
33. Li Y, Hoffmann J, Li Y, Stephano F, Bruchhaus I, Fink C, et al. Octopamine controls starvation resistance, life span and metabolic traits in Drosophila. Sci Rep. 2016;6:35359. doi: 10.1038/srep35359 27759117; PubMed Central PMCID: PMC5069482.
34. Saraswati S, Fox LE, Soll DR, Wu CF. Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. Journal of neurobiology. 2004;58(4):425–41. doi: 10.1002/neu.10298 14978721.
35. Selcho M, Pauls D, El Jundi B, Stocker RF, Thum AS. The role of octopamine and tyramine in Drosophila larval locomotion. J Comp Neurol. 2012;520(16):3764–85. doi: 10.1002/cne.23152 22627970.
36. Li Y, Tiedemann L, von Frieling J, Nolte S, El-Kholy S, Stephano F, et al. The Role of Monoaminergic Neurotransmission for Metabolic Control in the Fruit Fly Drosophila Melanogaster. Front Syst Neurosci. 2017;11:60. doi: 10.3389/fnsys.2017.00060 28878633; PubMed Central PMCID: PMC5572263.
37. Yang Z, Yu Y, Zhang V, Tian Y, Qi W, Wang L. Octopamine mediates starvation-induced hyperactivity in adult Drosophila. Proc Natl Acad Sci U S A. 2015;112(16):5219–24. doi: 10.1073/pnas.1417838112 25848004; PubMed Central PMCID: PMC4413307.
38. Watanabe K, Chiu H, Pfeiffer BD, Wong AM, Hoopfer ED, Rubin GM, et al. A Circuit Node that Integrates Convergent Input from Neuromodulatory and Social Behavior-Promoting Neurons to Control Aggression in Drosophila. Neuron. 2017;95(5):1112–+. doi: 10.1016/j.neuron.2017.08.017 WOS:000408687900017. 28858617
39. Wu CL, Shih MF, Lee PT, Chiang AS. An octopamine-mushroom body circuit modulates the formation of anesthesia-resistant memory in Drosophila. Current biology: CB. 2013;23(23):2346–54. doi: 10.1016/j.cub.2013.09.056 24239122.
40. Li Y, Fink C, El-Kholy S, Roeder T. The octopamine receptor octss2R is essential for ovulation and fertilization in the fruit fly Drosophila melanogaster. Archives of insect biochemistry and physiology. 2015;88(3):168–78. doi: 10.1002/arch.21211 25353988.
41. Lim J, Sabandal PR, Fernandez A, Sabandal JM, Lee HG, Evans P, et al. The octopamine receptor Octbeta2R regulates ovulation in Drosophila melanogaster. PloS one. 2014;9(8):e104441. doi: 10.1371/journal.pone.0104441 25099506; PubMed Central PMCID: PMC4123956.
42. Erion R, DiAngelo JR, Crocker A, Sehgal A. Interaction between sleep and metabolism in Drosophila with altered octopamine signaling. The Journal of biological chemistry. 2012;287(39):32406–14. doi: 10.1074/jbc.M112.360875 22829591; PubMed Central PMCID: PMC3463357.
43. Brum PC, Rolim NP, Bacurau AV, Medeiros A. Neurohumoral activation in heart failure: the role of adrenergic receptors. An Acad Bras Cienc. 2006;78(3):485–503. doi: 10.1590/s0001-37652006000300009 16936938.
44. Leosco D, Parisi V, Femminella GD, Formisano R, Petraglia L, Allocca E, et al. Effects of exercise training on cardiovascular adrenergic system. Front Physiol. 2013;4:348. doi: 10.3389/fphys.2013.00348 24348425; PubMed Central PMCID: PMC3842896.
45. Nall A, Sehgal A. Monoamines and sleep in Drosophila. Behav Neurosci. 2014;128(3):264–72. doi: 10.1037/a0036209 24886188.
46. Roeder T. Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol. 2005;50:447–77. doi: 10.1146/annurev.ento.50.071803.130404 15355245.
47. Hoff M, Balfanz S, Ehling P, Gensch T, Baumann A. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster. FASEB J. 2011;25(7):2484–91. doi: 10.1096/fj.11-180703 21478261; PubMed Central PMCID: PMC3114530.
48. Qi YX, Xu G, Gu GX, Mao F, Ye GY, Liu W, et al. A new Drosophila octopamine receptor responds to serotonin. Insect Biochem Mol Biol. 2017;90:61–70. Epub 2017/09/26. doi: 10.1016/j.ibmb.2017.09.010 28942992.
49. Burke CJ, Huetteroth W, Owald D, Perisse E, Krashes MJ, Das G, et al. Layered reward signalling through octopamine and dopamine in Drosophila. Nature. 2012;492(7429):433–+. doi: 10.1038/nature11614 WOS:000312488200057. 23103875
50. Luo J, Lushchak OV, Goergen P, Williams MJ, Nassel DR. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior. PloS one. 2014;9(6):e99732. doi: 10.1371/journal.pone.0099732 24923784; PubMed Central PMCID: PMC4055686.
51. Branch A, Zhang Y, Shen P. Genetic and Neurobiological Analyses of the Noradrenergic-like System in Vulnerability to Sugar Overconsumption Using a Drosophila Model. Scientific reports. 2017;7(1):17642. doi: 10.1038/s41598-017-17760-w 29247240; PubMed Central PMCID: PMC5732301.
52. Johnson E, Ringo J, Dowse H. Modulation of Drosophila heartbeat by neurotransmitters. Journal of comparative physiology B, Biochemical, systemic, and environmental physiology. 1997;167(2):89–97. doi: 10.1007/s003600050051 9120070.
53. Wang ZW, Hayakawa Y, Downer RGH. Factors Influencing Cyclic-Amp and Diacylglycerol Levels in Fat-Body of Locusta-Migratoria. Insect Biochemistry. 1990;20(4):325–30. WOS:A1990DQ56200001.
54. Viswanathan MC, Blice-Baum AC, Schmidt W, Foster DB, Cammarato A. Pseudo-acetylation of K326 and K328 of actin disrupts Drosophila melanogaster indirect flight muscle structure and performance. Front Physiol. 2015;6:116. Epub 2015/05/15. doi: 10.3389/fphys.2015.00116 25972811; PubMed Central PMCID: PMC4412121.
55. Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature. 2004;429(6991):562–6. Epub 2004/06/04. doi: 10.1038/nature02549 15175753.
56. Monnier V, Iche-Torres M, Rera M, Contremoulins V, Guichard C, Lalevee N, et al. dJun and Vri/dNFIL3 are major regulators of cardiac aging in Drosophila. PLoS Genet. 2012;8(11):e1003081. Epub 2012/12/05. doi: 10.1371/journal.pgen.1003081 23209438; PubMed Central PMCID: PMC3510041.
57. Wessells RJ, Fitzgerald E, Cypser JR, Tatar M, Bodmer R. Insulin regulation of heart function in aging fruit flies. Nat Genet. 2004;36(12):1275–81. Epub 2004/11/27. ng1476 [pii]doi: 10.1038/ng1476 15565107.
58. Wessells RJ, Bodmer R. Screening assays for heart function mutants in Drosophila. BioTechniques. 2004;37(1):58–60, 2, 4 passim. Epub 2004/07/31. doi: 10.2144/04371ST01 15283201.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 6
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- „Jednohubky“ z klinického výzkumu – 2024/44
Nejčtenější v tomto čísle
- Osteocalcin promotes bone mineralization but is not a hormone
- AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization
- Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis