Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis
Autoři:
Xia Zhang aff001; Ya'nan Xu aff001; Bing Chen aff001; Le Kang aff001
Působiště autorů:
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
aff001; Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
aff002; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
aff003; College of Life Sciences, Hebei University, Baoding, China
aff004
Vyšlo v časopise:
Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008771
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008771
Souhrn
Some long noncoding RNAs (lncRNAs) are specifically expressed in brain cells, implying their neural and behavioural functions. However, how lncRNAs contribute to neural regulatory networks governing the precise behaviour of animals is less explored. Here, we report the regulatory mechanism of the nuclear-enriched lncRNA PAHAL for dopamine biosynthesis and behavioural adjustment in migratory locusts (Locusta migratoria), a species with extreme behavioral plasticity. PAHAL is transcribed from the sense (coding) strand of the gene encoding phenylalanine hydroxylase (PAH), which is responsible for the synthesis of dopamine from phenylalanine. PAHAL positively regulates PAH expression resulting in dopamine production in the brain. In addition, PAHAL modulates locust behavioral aggregation in a population density-dependent manner. Mechanistically, PAHAL mediates PAH transcriptional activation by recruiting serine/arginine-rich splicing factor 2 (SRSF2), a transcription/splicing factor, to the PAH proximal promoter. The co-activation effect of PAHAL requires the interaction of the PAHAL/SRSF2 complex with the promoter-associated nascent RNA of PAH. Thus, the data support a model of feedback modulation of animal behavioural plasticity by an lncRNA. In this model, the lncRNA mediates neurotransmitter metabolism through orchestrating a local transcriptional loop.
Klíčová slova:
DNA transcription – Gene expression – Locusts – Long non-coding RNAs – Metabolic pathways – Nymphs – Small interfering RNAs – Transcriptional control
Zdroje
1. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009; 10: 155–159. doi: 10.1038/nrg2521 19188922
2. Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013; 14: 699–712. doi: 10.1038/nrm3679 24105322
3. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016; 17: 47–62. doi: 10.1038/nrg.2015.10 26666209
4. Lee JT. The X as Model for RNA’s Niche in Epigenomic Regulation. Cold Spring Harbor Perspect Biol. 2010; 2: a003749. doi: 10.1101/cshperspect.a003749 20739414
5. Meller VH, Joshi SS, Deshpande N. Modulation of chromatin by noncoding RNA. Annu Rev Genet. 2015; 49: 673–695. doi: 10.1146/annurev-genet-112414-055205 26631517
6. Ohhata T, Senner CE, Hemberger M, Wutz A. Lineage-specific function of the noncoding Tsix RNA for Xist repression and Xi reactivation in mice. Gene Dev. 2011; 25: 1702–1715. doi: 10.1101/gad.16997911 21852535
7. Michelini F, Pitchiaya S, Vitelli V, Sharma S, Gioia U, Pessina F, et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol. 2017; 19: 1400–1411. doi: 10.1038/ncb3643 29180822
8. Williamson L, Saponaro M, Boeing S, East P, Mitter R, Kantidakis T, et al. UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell. 2017; 168: 1–13. doi: 10.1016/j.cell.2016.12.043
9. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014; 15: 7–21. doi: 10.1038/nrg3606 24296535
10. Bian S, Sun T. Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol. 2011; 44: 359–373. doi: 10.1007/s12035-011-8211-3 21969146
11. Sallam T, Jones MC, Gilliland T, Zhang L, Wu X, Eskin A, et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature. 2016; 534: 124–128. doi: 10.1038/nature17674 27251289
12. Liu X, Xiao Z-D, Han L, Zhang J, Lee S-W, Wang W, et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat Cell Biol. 2016; 18: 431–442. doi: 10.1038/ncb3328 26999735
13. Tang YJ, Zhou T, Yu X, Xue ZX, Shen N. The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol. 2017; 13: 657–669. doi: 10.1038/nrrheum.2017.162 28978995
14. Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, et al. Long non-coding RNA and alternative splicing modulations in Parkinson's leukocytes identified by RNA sequencing. PLoS Comput Biol. 2014; 10: e1003517. doi: 10.1371/journal.pcbi.1003517 24651478
15. Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012; 13: 528–541. doi: 10.1038/nrn3234 22814587
16. Peschansky VJ, Pastori C, Zeier Z, Wentzel K, Velmeshev D, Magistri M, et al. The long non-coding RNA FMR4 promotes proliferation of human neural precursor cells and epigenetic regulation of gene expression in trans. Mol Cell Neurosci. 2016; 74: 49–57. doi: 10.1016/j.mcn.2016.03.008 27001315
17. Schaukowitch K, Kim TK. Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience. 2014; 264: 25–38. doi: 10.1016/j.neuroscience.2013.12.009 24342564
18. Earls LR, Westmoreland JJ, Zakharenko SS. Non-coding RNA regulation of synaptic plasticity and memory: Implications for aging. Ageing Res Rev. 2014; 17: 34–42. doi: 10.1016/j.arr.2014.03.004 24681292
19. Rani N, Nowakowski TJ, Zhou H, Godshalk SE, Lisi V, Kriegstein AR, et al. A primate lncRNA mediates Notch signaling during neuronal development by sequestering miRNA. Neuron. 2016; 90: 1174–1188. doi: 10.1016/j.neuron.2016.05.005 27263970
20. Shields EJ, Sheng L, Weiner AK, Garcia BA, Bonasio R. High-quality genome assemblies reveal long non-coding RNAs expressed in Ant brains. Cell Rep. 2018; 23: 3078–3090. doi: 10.1016/j.celrep.2018.05.014 29874592
21. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013; 2: e01749. doi: 10.7554/eLife.01749 24381249
22. Soshnev AA, Ishimoto H, McAllister BF, Li X, Wehling MD, Kitamoto T, et al. A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics. 2011; 189: 455–468. doi: 10.1534/genetics.111.131706 21775470
23. Li M, Wen S, Guo X, Bai B, Gong Z, Liu X, et al. The novel long non-coding RNA CRG regulates Drosophila locomotor behavior. Nucleic Acids Res. 2012; 40: 11714–11727. doi: 10.1093/nar/gks943 23074190
24. Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016; 539: 452–455. doi: 10.1038/nature20149 27783602
25. Guil S, Esteller M. Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol. 2012; 19: 1068–1075. doi: 10.1038/nsmb.2428 23132386
26. Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017; 18: 206. doi: 10.1186/s13059-017-1348-2 29084573
27. Chen LL. Linking long noncoding RNA localization and function. Trends Biochem Sci. 2016; 41: 761–772. doi: 10.1016/j.tibs.2016.07.003 27499234
28. Csorba T, Questa JI, Sun Q, Dean C. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc Natl Acad Sci USA. 2014; 111: 16160–16165. doi: 10.1073/pnas.1419030111 25349421
29. Raveendra BL, Swarnkar S, Avchalumov Y, Liu X-A, Grinman E, Badal K, et al. Long noncoding RNA GM12371 acts as a transcriptional regulator of synapse function. Proc Natl Acad Sci USA 2018; 115: E10197–E205. doi: 10.1073/pnas.1722587115 30297415
30. Spadaro PA, Flavell CR, Widagdo J, Ratnu VS, Troup M, Ragan C, et al. Long noncoding RNA-directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice. Biol Psychiat. 2015; 78: 848–859. doi: 10.1016/j.biopsych.2015.02.004 25792222
31. Ng SY, Lin L, Soh BS, Stanton LW. Long noncoding RNAs in development and disease of the central nervous system. Trends Genet. 2013; 29: 461–468. doi: 10.1016/j.tig.2013.03.002 23562612
32. Gepshtein S, Li XY, Snider J, Plank M, Lee D, Poizner H. Dopamine function and the efficiency of human movement. J Cognitive Neurosci. 2014; 26: 645–657. doi: 10.1162/jocn_a_00503 24144250
33. Cerovic M, d'Isa R, Tonini R, Brambilla R. Molecular and cellular mechanisms of dopamine-mediated behavioral plasticity in the striatum. Neurobiol Learn Mem. 2013; 105: 63–80. doi: 10.1016/j.nlm.2013.06.013 23827407
34. Coleman CM, Neckameyer WS. Substrate regulation of serotonin and dopamine synthesis in Drosophila. Invert Neurosci. 2004; 5: 85–96. doi: 10.1007/s10158-004-0031-y 15480914
35. Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011; 508: 1–12. doi: 10.1016/j.abb.2010.12.017 21176768
36. Yang M, Wei Y, Jiang F, Wang Y, Guo X, He J, et al. MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLoS Genet. 2014; 10: e1004206. doi: 10.1371/journal.pgen.1004206 24586212
37. Ruiz-Vazquez P, Silva FJ. Aberrant splicing of the Drosophila melanogaster phenylalanine hydroxylase pre-mRNA caused by the insertion of a B104/roo transposable element in the Henna locus. Insect Biochem Mol Biol. 1999; 29: 311–318. doi: 10.1016/s0965-1748(99)00002-8 10333570
38. Wang X, Kang L. Molecular mechanisms of phase change in locusts. Annu Rev Entomol. 2014; 59: 225–244. doi: 10.1146/annurev-ento-011613-162019 24160426
39. Guo X, Ma Z, Kang L. Two dopamine receptors play different roles in phase change of the migratory locust. Front Behav Neurosci. 2015; 9: 80. doi: 10.3389/fnbeh.2015.00080 25873872
40. Ma Z, Guo W, Guo X, Wang X, Kang L. Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proc Natl Acad Sci USA. 2011; 108: 3882–3887. doi: 10.1073/pnas.1015098108 21325054
41. Pener MP, Simpson SJ. Locust phase polyphenism: an update. Adv Insect Physiol. 2009; 36: 1–272. https://doi.org/10.1016/S0065-2806(08)36001-9
42. Guo W, Wang X, Ma Z, Xue L, Han J, Yu D, et al. CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLoS Genet. 2011; 7: e1001291. doi: 10.1371/journal.pgen.1001291 21304893
43. Burrows M, Rogers SM, Ott SR. Epigenetic remodelling of brain, body and behaviour during phase change in locusts. Neural Syst Circuits. 2011; 1: 11. doi: 10.1186/2042-1001-1-11 22330837
44. Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W. CPAT: Coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013; 41: e74. doi: 10.1093/nar/gkt006 23335781
45. Coleman CM, Neckameyer WS. Serotonin synthesis by two distinct enzymes in Drosophila melanogaster. Arch Insect Biochem Physiol. 2005; 59: 12–31. doi: 10.1002/arch.20050 15822093
46. Neckameyer WS, White K. A single locus encodes both phenylalanine hydroxylase and tryptophan hydroxylase activities in Drosophila. J Biol Chem. 1992; 267: 4199–4206 1371286
47. Zhang B, Gunawardane L, Niazi F, Jahanbani F, Chen X, Valadkhan S. A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA. Mol Cell Biol. 2014; 34: 2318–2329. doi: 10.1128/MCB.01673-13 24732794
48. Lin SR, Xiao R, Sun PQ, Xu XD, Fu XD. Dephosphorylation-dependent sorting of SR splicing factors during mRNP maturation. Mol Cell. 2005; 20: 413–425. doi: 10.1016/j.molcel.2005.09.015 16285923
49. Ji X, Zhou Y, Pandit S, Huang J, Li H, Lin CY, et al. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell. 2013; 153: 855–868. doi: 10.1016/j.cell.2013.04.028 23663783
50. Homberg U. Neuroarchitecture of the central complex in the brain of the locust Schistocerca gregaria and S. americana as revealed by serotonin immunocytochemistry. J Comp Neurol. 1991; 303: 245–254. doi: 10.1002/cne.903030207 2013639
51. Wendt B, Homberg U. Immunocytochemistry of dopamine in the brain of the locust Schistocerca gregaria. J Comp Neurol. 1992; 321: 387–403. doi: 10.1002/cne.903210307 1506476
52. Homberg U. Neurotransmitters and neuropeptides in the brain of the locust. J Comp Neurol. 2002; 56: 189–209. doi: 10.1002/jemt.10024 11810722
53. Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet. 2020; 21: 102–117. doi: 10.1038/s41576-019-0184-5 31729473
54. Yan P, Luo S, Lu JY, Shen X. Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Curr Opin Genet Dev. 2017; 46: 170–178. doi: 10.1016/j.gde.2017.07.009 28843809
55. Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science. 2011; 331: 76–79. doi: 10.1126/science.1197349 21127216
56. Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, et al. Lncrna GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov. 2016; 6: 784–801. doi: 10.1158/2159-8290.CD-15-0921 27147598
57. Chen B, Zhang Y, Zhang X, Jia S, Chen S, Kang L. Genome-wide identification and developmental expression profiling of long noncoding RNAs during Drosophila metamorphosis. Sci Rep. 2016; 6: 23330. doi: 10.1038/srep23330 26996731
58. Sarropoulos I, Marin R, Cardoso-Moreira M, Kaessmann H. Developmental dynamics of lncRNAs across mammalian organs and species. Nature. 2019, 571: 510–514. doi: 10.1038/s41586-019-1341-x 31243368
59. Sun Q, Hao Q, Prasanth KV. Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet. 2018, 34: 142–157. doi: 10.1016/j.tig.2017.11.005 29249332
60. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011; 472: 120–124. doi: 10.1038/nature09819 21423168
61. Lin S, Fu XD. SR proteins and related factors in alternative splicing. Adv Exp Med Biol. 2007; 623: 107–122. doi: 10.1007/978-0-387-77374-2_7 18380343
62. Lin SR, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD. The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol. 2008; 15: 819–826. doi: 10.1038/nsmb.1461 18641664
63. Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J. 2009; 417: 15–27. doi: 10.1042/BJ20081501 19061484
64. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010; 39: 925–938. doi: 10.1016/j.molcel.2010.08.011 20797886
65. Sapra AK, Anko ML, Grishina I, Lorenz M, Pabis M, Poser I, et al. SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol Cell. 2009; 34: 179–190. doi: 10.1016/j.molcel.2009.02.031 19394295
66. Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010; 29: 3082–3093. PMC2944070 doi: 10.1038/emboj.2010.199 20729808
67. Chen B, Li S, Ren Q, Tong X, Zhang X, Kang L. Paternal epigenetic effects of population density on locust phase-related characteristics associated with heat-shock protein expression. Mol Ecol. 2015; 24: 851–862. doi: 10.1111/mec.13072 25581246
68. Chen S, Yang P, Jiang F, Wei Y, Ma Z, Kang L. De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS One. 2010; 5: e15633. doi: 10.1371/journal.pone.0015633 21209894
69. Burns MJ, Nixon GJ, Foy CA, Harris N. Standardisation of data from real-time quantitative PCR methods–evaluation of outliers and comparison of calibration curves. BMC Biotechnol. 2005; 5: 31. doi: 10.1186/1472-6750-5-31 16336641
70. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391: 806–811. doi: 10.1038/35888 9486653
71. Belles X. Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu Rev Entomol. 2010; 55: 111–128. doi: 10.1146/annurev-ento-112408-085301 19961326
72. Luo Y, Wang X, Yu D, Kang L. The SID-1 double-stranded RNA transporter is not required for systemic RNAi in the migratory locust. RNA Biol. 2012; 9: 663–671. doi: 10.4161/rna.19986 22614832
73. He J, Chen Q, Wei Y, Jiang F, Yang M, Hao S, et al. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. Proc Natl Acad Sci USA. 2016; 113: 584–589. doi: 10.1073/pnas.1521098113 26729868
74. Wang Y, Yang P, Cui F, Kang L. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis. PLoS Pathog. 2013; 9: e1003102. doi: 10.1371/journal.ppat.1003102 23326229
75. Hirosawa M, Hoshida M, Ishikawa M, Toya T. MASCOT: Multiple alignment system for protein sequences based on three-way dynamic programming. Bioinformatics. 1993; 9: 161–167. doi: 10.1093/bioinformatics/9.2.161 8481818
76. Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, et al. The locust genome provides insight into swarm formation and long-distance flight. Nat Commun. 2014; 5: 2957. doi: 10.1038/ncomms3957 24423660
77. Daubner GM, Cléry A, Jayne S, Stevenin J, Allain FHT. A syn–anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO J. 2012; 31: 162–174. doi: 10.1038/emboj.2011.367 22002536
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 4
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- „Jednohubky“ z klinického výzkumu – 2024/44
Nejčtenější v tomto čísle
- Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control
- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- Molecular genetics of maternally-controlled cell divisions
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum