Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies
Autoři:
Lulu Shang aff001; Jennifer A. Smith aff002; Xiang Zhou aff001
Působiště autorů:
Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America
aff001; Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
aff002; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States of America
aff003; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, United States of America
aff004
Vyšlo v časopise:
Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008734
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008734
Souhrn
Genome-wide association studies (GWASs) have identified many SNPs associated with various common diseases. Understanding the biological functions of these identified SNP associations requires identifying disease/trait relevant tissues or cell types. Here, we develop a network method, CoCoNet, to facilitate the identification of trait-relevant tissues or cell types. Different from existing approaches, CoCoNet incorporates tissue-specific gene co-expression networks constructed from either bulk or single cell RNA sequencing (RNAseq) studies with GWAS data for trait-tissue inference. In particular, CoCoNet relies on a covariance regression network model to express gene-level effect measurements for the given GWAS trait as a function of the tissue-specific co-expression adjacency matrix. With a composite likelihood-based inference algorithm, CoCoNet is scalable to tens of thousands of genes. We validate the performance of CoCoNet through extensive simulations. We apply CoCoNet for an in-depth analysis of four neurological disorders and four autoimmune diseases, where we integrate the corresponding GWASs with bulk RNAseq data from 38 tissues and single cell RNAseq data from 10 cell types. In the real data applications, we show how CoCoNet can help identify specific glial cell types relevant for neurological disorders and identify disease-targeted colon tissues as relevant for autoimmune diseases.
Klíčová slova:
Autoimmune diseases – Brain diseases – Colon – Covariance – Gene expression – Genetic networks – Genome-wide association studies – Neurons
Zdroje
1. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6. Epub 2013/12/10. doi: 10.1093/nar/gkt1229 24316577; PubMed Central PMCID: PMC3965119.
2. Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet. 2015;47(6):569–76. Epub 2015/04/29. doi: 10.1038/ng.3259 25915600; PubMed Central PMCID: PMC4828725.
3. Xiao X, Chang H, Li M. Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies. Mol Psychiatry. 2017;22(4):497–511. Epub 2017/01/04. doi: 10.1038/mp.2016.241 28044063; PubMed Central PMCID: PMC5378805.
4. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11(2):100–13. Epub 2010/01/21. doi: 10.1038/nrn2774 20087360.
5. Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J. Molecular mechanisms of schizophrenia. Cell Physiol Biochem. 2007;20(6):687–702. Epub 2007/11/06. doi: 10.1159/000110430 17982252.
6. Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015;16(3):159–72. Epub 2015/02/24. doi: 10.1038/nrn3901 25697159.
7. Belmaker RH. Bipolar disorder. N Engl J Med. 2004;351(5):476–86. Epub 2004/07/30. doi: 10.1056/NEJMra035354 15282355.
8. Hao X, Zeng P, Zhang S, Zhou X. Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies. Plos Genet. 2018;14(1):e1007186. Epub 2018/01/30. doi: 10.1371/journal.pgen.1007186 29377896; PubMed Central PMCID: PMC5805369.
9. Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet. 2013;45(2):124–30. Epub 2012/12/25. doi: 10.1038/ng.2504 23263488; PubMed Central PMCID: PMC3826950.
10. Pickrell JK. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am J Hum Genet. 2014;94(4):559–73. Epub 2014/04/08. doi: 10.1016/j.ajhg.2014.03.004 24702953; PubMed Central PMCID: PMC3980523.
11. Kichaev G, Yang WY, Lindstrom S, Hormozdiari F, Eskin E, Price AL, et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. Plos Genet. 2014;10(10):e1004722. Epub 2014/10/31. doi: 10.1371/journal.pgen.1004722 25357204; PubMed Central PMCID: PMC4214605.
12. Trynka G, Westra HJ, Slowikowski K, Hu X, Xu H, Stranger BE, et al. Disentangling the Effects of Colocalizing Genomic Annotations to Functionally Prioritize Non-coding Variants within Complex-Trait Loci. Am J Hum Genet. 2015;97(1):139–52. Epub 2015/07/04. doi: 10.1016/j.ajhg.2015.05.016 26140449; PubMed Central PMCID: PMC4572568.
13. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518(7539):337–43. Epub 2014/11/05. doi: 10.1038/nature13835 25363779; PubMed Central PMCID: PMC4336207.
14. Li Y, Kellis M. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases. Nucleic Acids Res. 2016;44(18):e144. Epub 2016/07/14. doi: 10.1093/nar/gkw627 27407109; PubMed Central PMCID: PMC5062982.
15. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015;47(11):1228–35. Epub 2015/09/29. doi: 10.1038/ng.3404 26414678; PubMed Central PMCID: PMC4626285.
16. Consortium GT, Laboratory DA, Coordinating Center -Analysis Working G, Statistical Methods groups-Analysis Working G, Enhancing Gg, Fund NIHC, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–13. Epub 2017/10/13. doi: 10.1038/nature24277 29022597; PubMed Central PMCID: PMC5776756.
17. Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17:63. doi: 10.1186/s13059-016-0927-y 27052890; PubMed Central PMCID: PMC4823857.
18. Calderon D, Bhaskar A, Knowles DA, Golan D, Raj T, Fu AQ, et al. Inferring Relevant Cell Types for Complex Traits by Using Single-Cell Gene Expression. Am J Hum Genet. 2017;101(5):686–99. doi: 10.1016/j.ajhg.2017.09.009 WOS:000414251600003. 29106824
19. Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet. 2018;50(4):621–9. Epub 2018/04/11. doi: 10.1038/s41588-018-0081-4 29632380; PubMed Central PMCID: PMC5896795.
20. Chen M, Cho J, Zhao H. Incorporating biological pathways via a Markov random field model in genome-wide association studies. Plos Genet. 2011;7(4):e1001353. doi: 10.1371/journal.pgen.1001353 21490723; PubMed Central PMCID: PMC3072362.
21. Hou L, Chen M, Zhang CK, Cho J, Zhao H. Guilt by rewiring: gene prioritization through network rewiring in genome wide association studies. Hum Mol Genet. 2014;23(10):2780–90. doi: 10.1093/hmg/ddt668 24381306; PubMed Central PMCID: PMC3990172.
22. Jia P, Zhao Z. Network.assisted analysis to prioritize GWAS results: principles, methods and perspectives. Hum Genet. 2014;133(2):125–38. doi: 10.1007/s00439-013-1377-1 24122152; PubMed Central PMCID: PMC3943795.
23. Kim SS, Dai CZ, Hormozdiari F, van de Geijn B, Gazal S, Park Y, et al. Genes with High Network Connectivity Are Enriched for Disease Heritability. Am J Hum Genet. 2019;104(5):896–913. doi: 10.1016/j.ajhg.2019.03.020 WOS:000466608700009. 31051114
24. Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell. 2017;169(7):1177–86. doi: 10.1016/j.cell.2017.05.038 WOS:000403332400008. 28622505
25. Urry MJ, Sollich P. Random Walk Kernels and Learning Curves for Gaussian Process Regression on Random Graphs. J Mach Learn Res. 2013;14:1801–35. WOS:000323367000005.
26. Lan W, Fang Z, Wang HS, Tsai CL. Covariance Matrix Estimation via Network Structure. J Bus Econ Stat. 2018;36(2):359–69. doi: 10.1080/07350015.2016.1173558 WOS:000430720200014.
27. Varin C, Vidoni P. A note on composite likelihood inference and model selection. Biometrika. 2005;92(3):519–28. doi: 10.1093/biomet/92.3.519 WOS:000231524600002.
28. Talukdar HA, Asl HF, Jain RK, Ermel R, Ruusalepp A, Franzen O, et al. Cross-Tissue Regulatory Gene Networks in Coronary Artery Disease. Cell Syst. 2016;2(3):196–208. doi: 10.1016/j.cels.2016.02.002 WOS:000394358800009. 27135365
29. Young J, Modat M, Cardoso MJ, Mendelson A, Cash D, Ourselin S, et al. Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. Neuroimage Clin. 2013;2:735–45. Epub 2013/11/02. doi: 10.1016/j.nicl.2013.05.004 24179825; PubMed Central PMCID: PMC3777690.
30. Schmitt AD, Hu M, Jung I, Xu Z, Qiu YJ, Tan CL, et al. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. Cell Rep. 2016;17(8):2042–59. doi: 10.1016/j.celrep.2016.10.061 WOS:000390893000012. 27851967
31. Ripke S, Neale BM, Corvin A, Walters JTR, Farh KH, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–+. doi: 10.1038/nature13595 WOS:000339335700037. 25056061
32. Ruderfer DM, Fanous AH, Ripke S, McQuillin A, Amdur RL, Gejman PV, et al. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol Psychiatr. 2014;19(9):1017–24. doi: 10.1038/mp.2013.138 WOS:000342742700013. 24280982
33. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;45(12):1452–U206. doi: 10.1038/ng.2802 WOS:000327715800010. 24162737
34. Cordell HJ, Han YH, Mells GF, Li YF, Hirschfield GM, Greene CS, et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat Commun. 2015;6. doi: 10.1038/ncomms9019 WOS:000362944700001. 26394269
35. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24. doi: 10.1038/nature11582 WOS:000310434500042. 23128233
36. Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar HA, et al. Genetic identification of brain cell types underlying schizophrenia. Nat Genet. 2018;50(6):825–+. doi: 10.1038/s41588-018-0129-5 WOS:000433621000010. 29785013
37. Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi: 10.1038/nature11632 WOS:000310434500030. 23128226
38. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 2012;22(9):1760–74. doi: 10.1101/gr.135350.111 WOS:000308272800017. 22955987
39. Zhou X. A Unified Framework for Variance Component Estimation with Summary Statistics in Genome-Wide Association Studies. Ann Appl Stat. 2017;11(4):2027–51. Epub 2018/03/09. doi: 10.1214/17-AOAS1052 29515717; PubMed Central PMCID: PMC5836736.
40. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580–5. doi: 10.1038/ng.2653 WOS:000319563900002. 23715323
41. Sonawane AR, Platig J, Fagny M, Chen CY, Paulson JN, Lopes-Ramos CM, et al. Understanding Tissue-Specific Gene Regulation. Cell Rep. 2017;21(4):1077–88. Epub 2017/10/27. doi: 10.1016/j.celrep.2017.10.001 29069589; PubMed Central PMCID: PMC5828531.
42. Glass K, Huttenhower C, Quackenbush J, Yuan GC. Passing Messages between Biological Networks to Refine Predicted Interactions. Plos One. 2013;8(5). UNSP e6483210.1371/journal.pone.0064832. WOS:000319799900115.
43. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. Epub 2008/12/31. doi: 10.1186/1471-2105-9-559 19114008; PubMed Central PMCID: PMC2631488.
44. Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K, Hofree M, et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods. 2017;14(10):955–+. doi: 10.1038/nmeth.4407 WOS:000412002700013. 28846088
45. Zeng P, Zhou X. Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models. Nat Commun. 2017;8. ARTN 45610.1038/s41467-017-00470-2. WOS:000409458000010.
46. Del Re AC. A Practical Tutorial on Conducting Meta-Analysis in R. Quant Meth Psychol. 2015;11(1):37–50. doi: 10.20982/tqmp.11.1.p037 WOS:000429405500005.
47. Yang AC, Tsai SJ. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int J Mol Sci. 2017;18(8). Epub 2017/08/05. doi: 10.3390/ijms18081689 28771182; PubMed Central PMCID: PMC5578079.
48. Rubin DC, Shaker A, Levin MS. Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol. 2012;3:107. Epub 2012/05/16. doi: 10.3389/fimmu.2012.00107 22586430; PubMed Central PMCID: PMC3347037.
49. Zhao J, O'Connor T, Vassar R. The contribution of activated astrocytes to Abeta production: implications for Alzheimer's disease pathogenesis. J Neuroinflammation. 2011;8:150. Epub 2011/11/04. doi: 10.1186/1742-2094-8-150 22047170; PubMed Central PMCID: PMC3216000.
50. Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer's disease. Open Biol. 2017;7(12). Epub 2017/12/15. doi: 10.1098/rsob.170228 29237809; PubMed Central PMCID: PMC5746550.
51. Li YF, Sun H, Chen ZC, Xu HX, Bu GJ, Zheng H. Implications of GABAergic Neurotransmission in Alzheimer's Disease. Front Aging Neurosci. 2016;8. ARTN 3110.3389/fnagi.2016.00031. WOS:000370589100001.
52. Nirzhor SSR, Khan RI, Neelotpol S. The Biology of Glial Cells and Their Complex Roles in Alzheimer's Disease: New Opportunities in Therapy. Biomolecules. 2018;8(3). ARTN 9310.3390/biom8030093. WOS:000448394900051.
53. Liu LS, Schulz SC, Lee S, Reutiman TJ, Fatemi SH. Hippocampal CA1 pyramidal cell size is reduced in bipolar disorder. Cell Mol Neurobiol. 2007;27(3):351–8. doi: 10.1007/s10571-006-9128-7 WOS:000246562100008. 17235693
54. Keshavarz M. Glial cells as key elements in the pathophysiology and treatment of bipolar disorder. Acta Neuropsychiatr. 2017;29(3):140–52. doi: 10.1017/neu.2016.56 WOS:000401978700002. 27772534
55. Bien J, Tibshirani RJ. Sparse estimation of a covariance matrix. Biometrika. 2011;98(4):807–20. doi: 10.1093/biomet/asr054 WOS:000297366000004. 23049130
56. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9(3):432–41. doi: 10.1093/biostatistics/kxm045 WOS:000256977000005. 18079126
57. Grone R, Merris R, Sunder VS. The Laplacian Spectrum of a Graph. Siam J Matrix Anal A. 1990;11(2):218–38. doi: 10.1137/0611016 WOS:A1990CX24800006.
58. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006;7 Suppl 1:S7. Epub 2006/05/26. doi: 10.1186/1471-2105-7-S1-S7 16723010; PubMed Central PMCID: PMC1810318.
59. Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, et al. Computational discovery of gene modules and regulatory networks. Nature Biotechnology. 2003;21(11):1337–42. doi: 10.1038/nbt890 WOS:000186320000035. 14555958
60. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. Plos Biol. 2007;5(1):54–66. ARTN e810.1371/journal.pbio.0050008. WOS:000245243100007.
61. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. Plos One. 2010;5(9). ARTN e1277610.1371/journal.pone.0012776. WOS:000282210700002.
62. Chan TE, Stumpf MPH, Babtie AC. Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures. Cell Syst. 2017;5(3):251–+. doi: 10.1016/j.cels.2017.08.014 WOS:000411874500014. 28957658
63. Dai H, Li L, Zeng T, Chen LN. Cell-specific network constructed by single-cell RNA sequencing data. Nucleic Acids Research. 2019;47(11). ARTN e621093/nar/gkz172. WOS:000475702000002.
64. Sanchez-Castillo M, Blanco D, Tienda-Luna IM, Carrion MC, Huang Y. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics. 2018;34(6):964–70. Epub 2017/10/14. doi: 10.1093/bioinformatics/btx605 29028984.
65. Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, et al. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics. 2017;33(15):2314–21. Epub 2017/04/06. doi: 10.1093/bioinformatics/btx194 28379368; PubMed Central PMCID: PMC5860123.
66. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6. Epub 2017/10/11. doi: 10.1038/nmeth.4463 28991892; PubMed Central PMCID: PMC5937676.
67. Wu MC, Lee S, Cai TX, Li Y, Boehnke M, Lin XH. Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test. Am J Hum Genet. 2011;89(1):82–93. doi: 10.1016/j.ajhg.2011.05.029 WOS:000293041700007. 21737059
68. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet. 2010;87(1):139–45. Epub 2010/07/06. doi: 10.1016/j.ajhg.2010.06.009 20598278; PubMed Central PMCID: PMC2896770.
69. Wang K, Li M, Bucan M. Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet. 2007;81(6):1278–83. Epub 2007/10/30. doi: 10.1086/522374 17966091; PubMed Central PMCID: PMC2276352.
70. Peng G, Luo L, Siu HC, Zhu Y, Hu PF, Hong SJ, et al. Gene and pathway-based second-wave analysis of genome-wide association studies. Eur J Hum Genet. 2010;18(1):111–7. doi: 10.1038/ejhg.2009.115 WOS:000272609900021. 19584899
71. Ballard DH, Cho J, Zhao HY. Comparisons of Multi-Marker Association Methods to Detect Association Between a Candidate Region and Disease. Genet Epidemiol. 2010;34(3):201–12. doi: 10.1002/gepi.20448 WOS:000276448100001. 19810024
72. Gamazon ER, Segre AV, van de Bunt M, Wen XQ, Xi HS, Hormozdiari F, et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat Genet. 2018;50(7):956–+. doi: 10.1038/s41588-018-0154-4 WOS:000437224400011. 29955180
73. Ongen H, Brown AA, Delaneau O, Panousis NI, Nica AC, Consortium GT, et al. Estimating the causal tissues for complex traits and diseases. Nat Genet. 2017;49(12):1676–83. Epub 2017/10/24. doi: 10.1038/ng.3981 29058715.
74. Marbach D, Lamparter D, Quon G, Kellis M, Kutalik Z, Bergmann S. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases. Nat Methods. 2016;13(4):366–70. Epub 2016/03/08. doi: 10.1038/nmeth.3799 26950747; PubMed Central PMCID: PMC4967716.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 4
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Molecular genetics of maternally-controlled cell divisions
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum