-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaThe Drosophila actin nucleator DAAM is essential for left-right asymmetry
Autoři: Anil Chougule aff001; François Lapraz aff001; István Földi aff002; Delphine Cerezo aff001; József Mihály aff002; Stéphane Noselli aff001
Působiště autorů: Université Côte D’Azur, CNRS, Inserm, iBV, Nice, France aff001; Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, Hungary aff002; Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics,Hungary aff002
Vyšlo v časopise: The Drosophila actin nucleator DAAM is essential for left-right asymmetry. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008758
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008758Souhrn
Left-Right (LR) asymmetry is essential for organ positioning, shape and function. Myosin 1D (Myo1D) has emerged as an evolutionary conserved chirality determinant in both Drosophila and vertebrates. However, the molecular interplay between Myo1D and the actin cytoskeleton underlying symmetry breaking remains poorly understood. To address this question, we performed a dual genetic screen to identify new cytoskeletal factors involved in LR asymmetry. We identified the conserved actin nucleator DAAM as an essential factor required for both dextral and sinistral development. In the absence of DAAM, organs lose their LR asymmetry, while its overexpression enhances Myo1D-induced de novo LR asymmetry. These results show that DAAM is a limiting, LR-specific actin nucleator connecting up Myo1D with a dedicated F-actin network important for symmetry breaking.
Klíčová slova:
Actins – Cytoskeleton – Drosophila melanogaster – Genetic screens – Genital anatomy – Phenotypes – Protein domains – RNA interference
Zdroje
1. Blum M, Feistel K, Thumberger T, Schweickert A. The evolution and conservation of left-right patterning mechanisms. Development. 2014;141 : 1603–13. doi: 10.1242/dev.100560 24715452
2. Coutelis J-B, González-Morales N, Géminard C, Noselli S. Diversity and convergence in the mechanisms establishing L/R asymmetry in metazoa. EMBO Rep. 2014;15 : 926–37. doi: 10.15252/embr.201438972 25150102
3. Nakamura T, Hamada H. Left-right patterning: conserved and divergent mechanisms. Development. 2012;139 : 3257–3262. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22912409&retmode=ref&cmd=prlinks doi: 10.1242/dev.061606 22912409
4. Spéder P, Adám G, Noselli S. Type ID unconventional myosin controls left-right asymmetry in Drosophila. Nature. 2006;440 : 803–7. doi: 10.1038/nature04623 16598259
5. Hozumi S, Maeda R, Taniguchi K, Kanai M, Shirakabe S, Sasamura T, et al. An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature. 2006;440 : 798–802. doi: 10.1038/nature04625 16598258
6. Petzoldt AG, Coutelis J-B, Geminard C, Speder P, Suzanne M, Cerezo D, et al. DE-Cadherin regulates unconventional Myosin ID and Myosin IC in Drosophila left-right asymmetry establishment. Development. 2012;139 : 1874–1884. doi: 10.1242/dev.047589 22491943
7. Taniguchi K, Maeda R, Ando T, Okumura T, Nakazawa N, Hatori R, et al. Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. Science (80-). 2011;333 : 339–341. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21764746&retmode=ref&cmd=prlinks doi: 10.1126/science.1200940 21764746
8. Coutelis J-B, Géminard C, Spéder P, Suzanne M, Petzoldt AG, Noselli S. Drosophila Left/Right Asymmetry Establishment Is Controlled by the Hox Gene Abdominal-B. Dev Cell. 2013;24 : 89–97. Available: doi: 10.1016/j.devcel.2012.11.013 23328400
9. González-Morales N, Géminard C, Lebreton G, Cerezo D, Coutelis JB, Noselli S. The Atypical Cadherin Dachsous Controls Left-Right Asymmetry in Drosophila. Dev Cell. 2015;33 : 675–689. doi: 10.1016/j.devcel.2015.04.026 26073018
10. Suzanne M, Petzoldt AG, Spéder P, Coutelis J-B, Steller H, Noselli S. Coupling of Apoptosis and L/R Patterning Controls Stepwise Organ Looping. Curr Biol. 2010;20 : 1773–1778. doi: 10.1016/j.cub.2010.08.056 20832313
11. Coutelis JB, Petzoldt AG, Speder P, Suzanne M, Noselli S. Left–right asymmetry in Drosophila. Semin Cell Dev Biol. 2008;19 : 252–262. Available: http://linkinghub.elsevier.com/retrieve/pii/S1084952108000086 doi: 10.1016/j.semcdb.2008.01.006 18328746
12. Geminard C, Gonzalez-Morales N, Coutelis J-BB, Noselli SS, Géminard C, González-Morales N, et al. The myosin ID pathway and left-right asymmetry in Drosophila. Genesis. 2014;52 : 471–80. doi: 10.1002/dvg.22763 24585718
13. Lebreton G, Géminard C, Lapraz F, Pyrpassopoulos S, Cerezo D, Spéder P, et al. Molecular to organismal chirality is induced by the conserved myosin 1D. Science (80-). 2018;362 : 949–952. doi: 10.1126/science.aat8642 30467170
14. Juan T, Géminard C, Coutelis JB, Cerezo D, Polès S, Noselli S, et al. Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry. Nat Commun. 2018;9 : 1942. doi: 10.1038/s41467-018-04284-8 29769531
15. Tingler M, Kurz S, Maerker M, Ott T, Fuhl F, Schweickert A, et al. A Conserved Role of the Unconventional Myosin 1d in Laterality Determination. Curr Biol. 2018;28 : 810–816.e3. doi: 10.1016/j.cub.2018.01.075 29478852
16. Noël ES, Verhoeven M, Lagendijk AK, Tessadori F, Smith K, Choorapoikayil S, et al. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality. Nat Commun. 2013;4. doi: 10.1038/ncomms3754 24212328
17. Kuroda R, Fujikura K, Abe M, Hosoiri Y, Asakawa S, Shimizu M, et al. Diaphanous gene mutation affects spiral cleavage and chirality in snails. Sci Rep. 2016;6 : 34809. doi: 10.1038/srep34809 27708420
18. Davison A, McDowell GSS, Holden JMM, Johnson HFF, Koutsovoulos GDD, Liu MMM, et al. Formin Is Associated with Left-Right Asymmetry in the Pond Snail and the Frog. Curr Biol. 2016;26 : 1–7. doi: 10.1016/j.cub.2015.11.020
19. Abe M, Kuroda R. The development of CRISPR for a mollusc establishes the formin Lsdia1 as the long-sought gene for snail dextral/sinistral coiling. Development. 2019;146: dev175976. doi: 10.1242/dev.175976 31088796
20. Paul AS, Pollard T. Review of the mechanism of processive actin filament elongation by formins. Cell Motil Cytoskeleton. 2009;66 : 606–617. doi: 10.1002/cm.20379 19459187
21. Grikscheit K, Grosse R. Formins at the Junction. Trends Biochem Sci. 2015;xx: 148–159. doi: 10.1016/j.tibs.2015.12.002 26732401
22. Higashi T, Ikeda T, Murakami T, Shirakawa R, Kawato M, Okawa K, et al. Flightless-I (Fli-I) regulates the actin assembly activity of diaphanous-related formins (DRFs) Daam1 and mDia1 in cooperation with active Rho GTPase. J Biol Chem. 2010. doi: 10.1074/jbc.M109.079236 20223827
23. Barko S, Bugyi B, Carlier MF, Gombos R, Matusek T, Mihályand J, et al. Characterization of the biochemical properties and biological function of the formin homology domains of Drosophila DAAM. J Biol Chem. 2010;285 : 13154–13169. doi: 10.1074/jbc.M109.093914 20177055
24. Matusek T, Djiane A, Jankovics F, Brunner D, Mlodzik M, Mihály J. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development. 2006;133 : 957–66. doi: 10.1242/dev.02266 16469972
25. Hu Y, Comjean A, Perkins LA, Perrimon N, Mohr SE. GLAD: an Online Database of G ene L ist A nnotation for D rosophila. J Genomics. 2015;3 : 75–81. doi: 10.7150/jgen.12863 26157507
26. Perkins AD, Lee MJJ, Tanentzapf G. The systematic identification of cytoskeletal genes required for Drosophila melanogaster muscle maintenance. Sci data. 2014;1 : 140002. doi: 10.1038/sdata.2014.2 25977760
27. Molnár I, Migh E, Szikora S, Kalmár T, Végh AG, Deák F, et al. DAAM Is Required for Thin Filament Formation and Sarcomerogenesis during Muscle Development in Drosophila. PLoS Genet. 2014;10: e1004166. doi: 10.1371/journal.pgen.1004166 24586196
28. McGuire SE. Spatiotemporal Rescue of Memory Dysfunction in Drosophila. Science (80-). 2003;302 : 1765–1768. doi: 10.1126/science.1089035 14657498
29. Matusek T, Gombos R, Szécsényi A, Sánchez-Soriano N, Czibula A, Pataki C, et al. Formin proteins of the DAAM subfamily play a role during axon growth. J Neurosci. 2008;28 : 13310–13319. doi: 10.1523/JNEUROSCI.2727-08.2008 19052223
30. Tay HG, Schulze SK, Compagnon J, Foley FC, Heisenberg C-PC-P, Yost HJ, et al. Lethal giant larvae 2 regulates development of the ciliated organ Kupffer’s vesicle. Development. 2013;140 : 1550–9. doi: 10.1242/dev.087130 23482490
31. Sato K, Hiraiwa T, Maekawa E, Isomura A, Shibata T, Kuranaga E. Left–right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis. Nat Commun. 2015;6 : 10074. doi: 10.1038/ncomms10074 26656655
32. Fraichard S, Bougé AL, Kendall T, Chauvel I, Bouhin H, Bunch TA. Tenectin is a novel αPS2βPS integrin ligand required for wing morphogenesis and male genital looping in Drosophila. Dev Biol. 2010. doi: 10.1016/j.ydbio.2010.02.008 20152825
33. García-Castro MI, Vielmetter E, Bronner-Fraser M. N-cadherin, a cell adhesion molecule involved in establishment of embryonic left-right asymmetry. Science (80-). 2000. doi: 10.1126/science.288.5468.1047 10807574
34. Kurpios NA, Ibañes M, Davis NM, Lui W, Katz T, Martin JF, et al. The direction of gut looping is established by changes in the extracellular matrix and in cell:cell adhesion. Proc Natl Acad Sci. 2008;105 : 8499–8506. doi: 10.1073/pnas.0803578105 18574143
35. Welsh IC, Thomsen M, Gludish DW, Alfonso-Parra C, Bai Y, Martin JF, et al. Integration of left-right Pitx2 transcription and Wnt signaling drives asymmetric gut morphogenesis via Daam2. Dev Cell. 2013;26 : 629–644. doi: 10.1016/j.devcel.2013.07.019 24091014
36. Juan T, Géminard C, Coutelis J-B, Cerezo D, Polès S, Noselli S, et al. Myosin1D is an evolutionarily conserved determinant of animal Left/Right asymmetry. bioRxiv. 2018;in press. doi: 10.1101/267146
37. Miller RK, De La Torre Canny SG, Jang CW, Cho K, Ji H, Wagner DS, et al. Pronephric tubulogenesis requires Daam1-mediated planar cell polarity signaling. J Am Soc Nephrol. 2011;22 : 1654–1667. doi: 10.1681/ASN.2010101086 21804089
38. Tee YH, Shemesh T, Thiagarajan V, Hariadi RF, Anderson KL, Page C, et al. Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol. 2015;17 : 445–457. doi: 10.1038/ncb3137 25799062
39. Jalal S, Shi S, Acharya V, Huang RY-J, Viasnoff V, Bershadsky AD, et al. Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement. J Cell Sci. 2019;132: jcs220780. doi: 10.1242/jcs.220780 30787030
40. de Navas L, Foronda D, Suzanne M, Sánchez-Herrero E. A simple and efficient method to identify replacements of P-lacZ by P-Gal4 lines allows obtaining Gal4 insertions in the bithorax complex of Drosophila. Mech Dev. 2006. doi: 10.1016/j.mod.2006.07.010 16971094
41. Iwaki DD, Lengyel JA. A Delta-Notch signaling border regulated by Engrailed/Invected repression specifies boundary cells in the Drosophila hindgut. Mech Dev. 2002. doi: 10.1016/S0925-4773(02)00061-8
42. Sudarsan V, Pasalodos-Sanchez S, Wan S, Gampel A, Skaer H. A genetic hierarchy establishes mitogenic signalling and mitotic competence in the renal tubules of Drosophila. Development. 2002.
43. Couturier L, Mazouni K, Bernard F, Besson C, Reynaud E, Schweisguth F. Regulation of cortical stability by RhoGEF3 in mitotic Sensory Organ Precursor cells in Drosophila. Biol Open. 2017. doi: 10.1242/bio.026641 29101098
44. Gombos R, Migh E, Antal O, Mukherjee A, Jenny A, Mihaly J. The Formin DAAM Functions as Molecular Effector of the Planar Cell Polarity Pathway during Axonal Development in Drosophila. J Neurosci. 2015;35 : 10154–10167. doi: 10.1523/JNEUROSCI.3708-14.2015 26180192
Článek Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathwayČlánek Inference of past demography, dormancy and self-fertilization rates from whole genome sequence dataČlánek Eliciting priors and relaxing the single causal variant assumption in colocalisation analysesČlánek Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacteriumČlánek The transcription and export complex THO/TREX contributes to transcription termination in plantsČlánek Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere cappingČlánek Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 4- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Test BioCog: 10 minut k orientaci v kognitivním stavu pacienta
- VIDEO: Terénní tým ECMO zachraňuje životy přímo v pražských ulicích
- Alkohol, zima a léky − sezónní rizika interakcí
- „Jednohubky“ z výzkumu 2025/40 – vánoční a silvestrovská porce
-
Všechny články tohoto čísla
- Dynamic localization of SPO11-1 and conformational changes of meiotic axial elements during recombination initiation of maize meiosis
- The plant mobile domain proteins MAIN and MAIL1 interact with the phosphatase PP7L to regulate gene expression and silence transposable elements in Arabidopsis thaliana
- Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles
- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- XPF-ERCC1 protects liver, kidney and blood homeostasis outside the canonical excision repair pathways
- Technical and social issues influencing the adoption of preprints in the life sciences
- The nanophthalmos protein TMEM98 inhibits MYRF self-cleavage and is required for eye size specification
- DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways
- Is imprinting the result of “friendly fire” by the host defense system?
- The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network
- XPF–ERCC1: Linchpin of DNA crosslink repair
- A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease
- Deconstructing cerebellar development cell by cell
- The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss
- Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans
- Molecular genetics of maternally-controlled cell divisions
- Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders
- Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish
- An integrated analysis of cell-type specific gene expression reveals genes regulated by REVOLUTA and KANADI1 in the Arabidopsis shoot apical meristem
- Discovery of novel hepatocyte eQTLs in African Americans
- Loss-of-function tolerance of enhancers in the human genome
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum
- Relaxed constraint and functional divergence of the progesterone receptor (PGR) in the human stem-lineage
- Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals
- Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence
- Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids
- Conserved nuclear hormone receptors controlling a novel plastic trait target fast-evolving genes expressed in a single cell
- Pathological mechanism and antisense oligonucleotide-mediated rescue of a non-coding variant suppressing factor 9 RNA biogenesis leading to hemophilia B
- Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway
- Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice
- Inference of past demography, dormancy and self-fertilization rates from whole genome sequence data
- Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover
- FANCJ helicase promotes DNA end resection by facilitating CtIP recruitment to DNA double-strand breaks
- Getting clear about the F-word in genomics
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Placental imprinting: Emerging mechanisms and functions
- Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses
- Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma
- Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination
- Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium
- Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control
- Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: Evidence for coevolution?
- Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator
- O-linked β-N-acetylglucosamine transferase plays an essential role in heart development through regulating angiopoietin-1
- The Drosophila FUS ortholog cabeza promotes adult founder myoblast selection by Xrp1-dependent regulation of FGF signaling
- The transcription and export complex THO/TREX contributes to transcription termination in plants
- Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping
- Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies
- Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos
- Correction: Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease
- C9orf72/ALFA-1 controls TFEB/HLH-30-dependent metabolism through dynamic regulation of Rag GTPases
- Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability
- ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction system broadening conjugation host range
- The Drosophila actin nucleator DAAM is essential for left-right asymmetry
- Translesion synthesis polymerases are dispensable for C. elegans reproduction but suppress genome scarring by polymerase theta-mediated end joining
- Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts
- UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize
- Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae
- Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Molecular genetics of maternally-controlled cell divisions
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání