Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans
Autoři:
Hideki Mutai aff001; Koichiro Wasano aff001; Yukihide Momozawa aff003; Yoichiro Kamatani aff004; Fuyuki Miya aff006; Sawako Masuda aff008; Noriko Morimoto aff009; Kiyomitsu Nara aff001; Satoe Takahashi aff002; Tatsuhiko Tsunoda aff006; Kazuaki Homma aff002; Michiaki Kubo aff012; Tatsuo Matsunaga aff001
Působiště autorů:
Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro, Tokyo, Japan
aff001; Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
aff002; Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
aff003; Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
aff004; Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshidakonoecho, Kyoto, Japan
aff005; Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
aff006; Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
aff007; Department of Otorhinolaryngology, National Hospital Organization Mie National Hospital, Tsu, Mie, Japan
aff008; Department of Otorhinolaryngology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
aff009; Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
aff010; The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, Illinois, United States of America
aff011; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
aff012; Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Meguro, Tokyo, Japan
aff013
Vyšlo v časopise:
Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008643
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008643
Souhrn
Hereditary hearing loss is challenging to diagnose because of the heterogeneity of the causative genes. Further, some genes involved in hereditary hearing loss have yet to be identified. Using whole-exome analysis of three families with congenital, severe-to-profound hearing loss, we identified a missense variant of SLC12A2 in five affected members of one family showing a dominant inheritance mode, along with de novo splice-site and missense variants of SLC12A2 in two sporadic cases, as promising candidates associated with hearing loss. Furthermore, we detected another de novo missense variant of SLC12A2 in a sporadic case. SLC12A2 encodes Na+, K+, 2Cl− cotransporter (NKCC) 1 and plays critical roles in the homeostasis of K+-enriched endolymph. Slc12a2-deficient mice have congenital, profound deafness; however, no human variant of SLC12A2 has been reported as associated with hearing loss. All identified SLC12A2 variants mapped to exon 21 or its 3’-splice site. In vitro analysis indicated that the splice-site variant generates an exon 21-skipped SLC12A2 mRNA transcript expressed at much lower levels than the exon 21-included transcript in the cochlea, suggesting a tissue-specific role for the exon 21-encoded region in the carboy-terminal domain. In vitro functional analysis demonstrated that Cl− influx was significantly decreased in all SLC12A2 variants studied. Immunohistochemistry revealed that SLC12A2 is located on the plasma membrane of several types of cells in the cochlea, including the strial marginal cells, which are critical for endolymph homeostasis. Overall, this study suggests that variants affecting exon 21 of the SLC12A2 transcript are responsible for hereditary hearing loss in humans.
Klíčová slova:
Audiology – Cell membranes – Cochlea – Deafness – Dideoxy DNA sequencing – Exon mapping – Reverse transcriptase-polymerase chain reaction – Yellow fluorescent protein
Zdroje
1. Morton CC, Nance WE. Newborn hearing screening—a silent revolution. N Engl J Med. 2006;354: 2151–2164. doi: 10.1056/NEJMra050700 16707752
2. Azaiez H, Booth KT, Ephraim SS, Crone B, Black-Ziegelbein EA, Marini RJ, et al. Genomic Landscape and Mutational Signatures of Deafness-Associated Genes. Am J Hum Genet. 2018;103: 484–497. doi: 10.1016/j.ajhg.2018.08.006 30245029
3. Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol. 2006;576: 11–21. doi: 10.1113/jphysiol.2006.112888 16857713
4. Nin F, Yoshida T, Murakami S, Ogata G, Uetsuka S, Choi S, et al. Computer modeling defines the system driving a constant current crucial for homeostasis in the mammalian cochlea by integrating unique ion transports. NPJ Syst Biol Appl. 2017;3: 24. doi: 10.1038/s41540-017-0025-0 28861279
5. Demos MK, van Karnebeek CD, Ross CJ, Adam S, Shen Y, Zhan SH, et al. A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. Orphanet J Rare Dis. 2014;9: 15. doi: 10.1186/1750-1172-9-15 24468074
6. Casimiro MC, Knollmann BC, Ebert SN, Vary JC Jr., Greene AE, Franz MR, et al. Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Proc Natl Acad Sci U S A. 2001;98: 2526–2531. doi: 10.1073/pnas.041398998 11226272
7. Letts VA, Valenzuela A, Dunbar C, Zheng QY, Johnson KR, Frankel WN. A new spontaneous mouse mutation in the Kcne1 gene. Mamm Genome. 2000;11: 831–835. doi: 10.1007/s003350010178 11003695
8. Tran BH. Endolymphatic deafness: a particular variety of cochlear disorder. ORL J Otorhinolaryngol Relat Spec. 2002;64: 120–124. doi: 10.1159/000057790 12021503
9. Gagnon LH, Longo-Guess CM, Berryman M, Shin JB, Saylor KW, Yu H, et al. The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J Neurosci. 2006;26: 10188–10198. doi: 10.1523/JNEUROSCI.2166-06.2006 17021174
10. Mount DB, Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch. 2004;447: 710–721. doi: 10.1007/s00424-003-1090-3 12759755
11. Mutai H, Suzuki N, Shimizu A, Torii C, Namba K, Morimoto N, et al. Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: a cross-sectional, multi-center next-generation sequencing study. Orphanet J Rare Dis. 2013;8: 172. doi: 10.1186/1750-1172-8-172 24164807
12. Brownstein Z, Friedman LM, Shahin H, Oron-Karni V, Kol N, Abu Rayyan A, et al. Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in Middle Eastern families. Genome Biol. 2011;12: R89. doi: 10.1186/gb-2011-12-9-r89 21917145
13. Shearer AE, Smith RJ. Genetics: advances in genetic testing for deafness. Curr Opin Pediatr. 2012;24: 679–686. doi: 10.1097/MOP.0b013e3283588f5e 23042251
14. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12: 745–755. doi: 10.1038/nrg3031 21946919
15. Taylor JC, Martin HC, Lise S, Broxholme J, Cazier JB, Rimmer A, et al. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat Genet. 2015;47: 717–726. doi: 10.1038/ng.3304 25985138
16. Delpire E, Lu J, England R, Dull C, Thorne T. Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet. 1999;22: 192–195. doi: 10.1038/9713 10369265
17. Dixon MJ, Gazzard J, Chaudhry SS, Sampson N, Schulte BA, Steel KP. Mutation of the Na-K-Cl co-transporter gene Slc12a2 results in deafness in mice. Hum Mol Genet. 1999;8: 1579–1584. doi: 10.1093/hmg/8.8.1579 10401008
18. Flagella M, Clarke LL, Miller ML, Erway LC, Giannella RA, Andringa A, et al. Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem. 1999;274: 26946–26955. doi: 10.1074/jbc.274.38.26946 10480906
19. Pace AJ, Lee E, Athirakul K, Coffman TM, O’Brien DA, Koller BH. Failure of spermatogenesis in mouse lines deficient in the Na(+)-K(+)-2Cl(-) cotransporter. J Clin Invest. 2000;105: 441–450. doi: 10.1172/JCI8553 10683373
20. Delpire E, Wolfe L, Flores B, Koumangoye R, Schornak CC, Omer S, et al. A patient with multisystem dysfunction carries a truncation mutation in human SLC12A2, the gene encoding the Na-K-2Cl cotransporter, NKCC1. Cold Spring Harb Mol Case Stud. 2016;2: a001289. doi: 10.1101/mcs.a001289 27900370
21. Anazi S, Maddirevula S, Salpietro V, Asi YT, Alsahli S, Alhashem A, et al. Expanding the genetic heterogeneity of intellectual disability. Hum Genet. 2017;136: 1419–1429. doi: 10.1007/s00439-017-1843-2 28940097
22. Marchese M, Valvo G, Moro F, Sicca F, Santorelli FM. Targeted Gene Resequencing (Astrochip) to Explore the Tripartite Synapse in Autism-Epilepsy Phenotype with Macrocephaly. Neuromolecular Med. 2016;18: 69–80. doi: 10.1007/s12017-015-8378-2 26537360
23. Merner ND, Mercado A, Khanna AR, Hodgkinson A, Bruat V, Awadalla P, et al. Gain-of-function missense variant in SLC12A2, encoding the bumetanide-sensitive NKCC1 cotransporter, identified in human schizophrenia. J Psychiatr Res. 2016;77: 22–26. doi: 10.1016/j.jpsychires.2016.02.016 26955005
24. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37: e67. doi: 10.1093/nar/gkp215 19339519
25. Verhoeven K, Van Laer L, Kirschhofer K, Legan PK, Hughes DC, Schatteman I, et al. Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat Genet. 1998;19: 60–62. doi: 10.1038/ng0598-60 9590290
26. Yamamoto N, Mutai H, Namba K, Morita N, Masuda S, Nishi Y, et al. Prevalence of TECTA mutation in patients with mid-frequency sensorineural hearing loss. Orphanet J Rare Dis. 2017;12: 157. doi: 10.1186/s13023-017-0708-z 28946916
27. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537: 508–514. doi: 10.1038/nature19356 27626380
28. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv. 2019: 531210.
29. Gagnon KB, Delpire E. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts. Am J Physiol Cell Physiol. 2013;304: C693–714. doi: 10.1152/ajpcell.00350.2012 23325410
30. Kishore S, Khanna A, Stamm S. Rapid generation of splicing reporters with pSpliceExpress. Gene. 2008;427: 104–110. doi: 10.1016/j.gene.2008.09.021 18930792
31. Randall J, Thorne T, Delpire E. Partial cloning and characterization of Slc12a2: the gene encoding the secretory Na+-K+-2Cl- cotransporter. Am J Physiol. 1997;273: C1267–1277. doi: 10.1152/ajpcell.1997.273.4.C1267 9357771
32. Vibat CR, Holland MJ, Kang JJ, Putney LK, O’Donnell ME. Quantitation of Na+-K+-2Cl- cotransport splice variants in human tissues using kinetic polymerase chain reaction. Anal Biochem. 2001;298: 218–230. doi: 10.1006/abio.2001.5398 11700976
33. The Genotype-Tissue Expression (GTEx) Project. Release 7:[The data used for the analyses described in this manuscript were obtained from: the GTEx Portal on 5/8/2019 and dbGaP accession number phs000424.vN.pN on 000425/000428/002019.]. https://www.gtexportal.org/home/.
34. Somasekharan S, Monette MY, Forbush B. Functional expression of human NKCC1 from a synthetic cassette-based cDNA: introduction of extracellular epitope tags and removal of cysteines. PLoS One. 2013;8: e82060. doi: 10.1371/journal.pone.0082060 24339991
35. Darman RB, Forbush B. A regulatory locus of phosphorylation in the N terminus of the Na-K-Cl cotransporter, NKCC1. J Biol Chem. 2002;277: 37542–37550. doi: 10.1074/jbc.M206293200 12145304
36. Monette MY, Forbush B. Regulatory activation is accompanied by movement in the C terminus of the Na-K-Cl cotransporter (NKCC1). J Biol Chem. 2012;287: 2210–2220. doi: 10.1074/jbc.M111.309211 22121194
37. Carmosino M, Gimenez I, Caplan M, Forbush B. Exon loss accounts for differential sorting of Na-K-Cl cotransporters in polarized epithelial cells. Mol Biol Cell. 2008;19: 4341–4351. doi: 10.1091/mbc.E08-05-0478 18667527
38. Schulte BA, Adams JC. Distribution of immunoreactive Na+,K+-ATPase in gerbil cochlea. J Histochem Cytochem. 1989;37: 127–134. doi: 10.1177/37.2.2536055 2536055
39. Crouch JJ, Sakaguchi N, Lytle C, Schulte BA. Immunohistochemical localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear. J Histochem Cytochem. 1997;45: 773–778. doi: 10.1177/002215549704500601 9199662
40. Kikuchi T, Adams JC, Miyabe Y, So E, Kobayashi T. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc. 2000;33: 51–56. doi: 10.1007/s007950070001 11810458
41. Abbas L, Whitfield TT. Nkcc1 (Slc12a2) is required for the regulation of endolymph volume in the otic vesicle and swim bladder volume in the zebrafish larva. Development. 2009;136: 2837–2848. doi: 10.1242/dev.034215 19633174
42. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536: 285–291. doi: 10.1038/nature19057 27535533
43. Kervestin S, Jacobson A. NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol. 2012;13: 700–712. doi: 10.1038/nrm3454 23072888
44. Chen R, Shi L, Hakenberg J, Naughton B, Sklar P, Zhang J, et al. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nat Biotechnol. 2016;34: 531–538. doi: 10.1038/nbt.3514 27065010
45. Moore-Hoon ML, Turner RJ. The structural unit of the secretory Na+-K+-2Cl- cotransporter (NKCC1) is a homodimer. Biochemistry. 2000;39: 3718–3724. doi: 10.1021/bi992301v 10736171
46. Parvin MN, Gerelsaikhan T, Turner RJ. Regions in the cytosolic C-terminus of the secretory Na(+)-K(+)-2Cl(-) cotransporter NKCC1 are required for its homodimerization. Biochemistry. 2007;46: 9630–9637. doi: 10.1021/bi700881a 17655331
47. Simard CF, Brunet GM, Daigle ND, Montminy V, Caron L, Isenring P. Self-interacting domains in the C terminus of a cation-Cl- cotransporter described for the first time. J Biol Chem. 2004;279: 40769–40777. doi: 10.1074/jbc.M406458200 15280386
48. Wu Q, Delpire E, Hebert SC, Strange K. Functional demonstration of Na+-K+-2Cl- cotransporter activity in isolated, polarized choroid plexus cells. Am J Physiol. 1998;275: C1565–1572. doi: 10.1152/ajpcell.1998.275.6.C1565 9843718
49. Simard CF, Bergeron MJ, Frenette-Cotton R, Carpentier GA, Pelchat ME, Caron L, et al. Homooligomeric and heterooligomeric associations between K+-Cl- cotransporter isoforms and between K+-Cl- and Na+-K+-Cl- cotransporters. J Biol Chem. 2007;282: 18083–18093. doi: 10.1074/jbc.M607811200 17462999
50. Caron L, Rousseau F, Gagnon E, Isenring P. Cloning and functional characterization of a cation-Cl- cotransporter-interacting protein. J Biol Chem. 2000;275: 32027–32036. doi: 10.1074/jbc.M000108200 10871601
51. Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature. 2002;416: 874–878. doi: 10.1038/416874a 11976689
52. Mazzoli M, Van Camp G, Newton V, Giarbini N, Declau F, Parving A. Recommendationf for the description of genetic and audiological data for families with nonsyndromic hereditary hearing impairment Hereditary Hearing Loss Homepage2014 [updated May 19, 2014; cited 2018 August 28]. http://hereditaryhearingloss.org.
53. Shigemizu D, Momozawa Y, Abe T, Morizono T, Boroevich KA, Takata S, et al. Performance comparison of four commercial human whole-exome capture platforms. Sci Rep. 2015;5: 12742. doi: 10.1038/srep12742 26235669
54. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43: 491–498. doi: 10.1038/ng.806 21478889
55. Okada Y, Momozawa Y, Sakaue S, Kanai M, Ishigaki K, Akiyama M, et al. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat Commun. 2018;9: 1631. doi: 10.1038/s41467-018-03274-0 29691385
56. Kitts A, Sherry S. The Single Nucleotide Polymorphism Database (dbSNP) of Nucleotide Sequence Variation. 2002 2011 Feb 2. In: The NCBI Handbook [Internet]. Bethesda (MD): National Center for Biotechnology Information (US). https://www.ncbi.nlm.nih.gov/books/NBK21088/.
57. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526: 68–74. doi: 10.1038/nature15393 26432245
58. Server EV. NHLBI GO Exome Sequencing Project (ESP) 2015 [updated May 14; cited 2016 August 1]. http://evs.gs.washington.edu/EVS/.
59. Higasa K, Miyake N, Yoshimura J, Okamura K, Niihori T, Saitsu H, et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. J Hum Genet. 2016;61: 547–553. doi: 10.1038/jhg.2016.12 26911352
60. Oza AM, DiStefano MT, Hemphill SE, Cushman BJ, Grant AR, Siegert RK, et al. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat. 2018;39: 1593–1613. doi: 10.1002/humu.23630 30311386
61. Mizutari K, Mutai H, Namba K, Miyanaga Y, Nakano A, Arimoto Y, et al. High prevalence of CDH23 mutations in patients with congenital high-frequency sporadic or recessively inherited hearing loss. Orphanet J Rare Dis. 2015;10: 60. doi: 10.1186/s13023-015-0276-z 25963016
62. Wagatsuma M, Kitoh R, Suzuki H, Fukuoka H, Takumi Y, Usami S. Distribution and frequencies of CDH23 mutations in Japanese patients with non-syndromic hearing loss. Clin Genet. 2007;72: 339–344. doi: 10.1111/j.1399-0004.2007.00833.x 17850630
63. Meehan TF, Conte N, West DB, Jacobsen JO, Mason J, Warren J, et al. Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat Genet. 2017;49: 1231–1238. doi: 10.1038/ng.3901 28650483
64. Mutai H, Miya F, Shibata H, Yasutomi Y, Tsunoda T, Matsunaga T. Gene expression dataset for whole cochlea of Macaca fascicularis. Sci Rep. 2018;8: 15554. doi: 10.1038/s41598-018-33985-9 30349143
65. Kowarz E, Loscher D, Marschalek R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol J. 2015;10: 647–653. doi: 10.1002/biot.201400821 25650551
66. Grandori R, Struck K, Giovanielli K, Carey J. A three-step PCR protocol for construction of chimeric proteins. Protein Eng. 1997;10: 1099–1100. doi: 10.1093/protein/10.9.1099 9464575
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 4
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Molecular genetics of maternally-controlled cell divisions
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum