XPF–ERCC1: Linchpin of DNA crosslink repair
Autoři:
Peter J. McHugh aff001
Působiště autorů:
Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
aff001
Vyšlo v časopise:
XPF–ERCC1: Linchpin of DNA crosslink repair. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008616
Kategorie:
Perspective
doi:
https://doi.org/10.1371/journal.pgen.1008616
Zdroje
1. Dronkert ML, Kanaar R. Repair of DNA interstrand cross-links. Mutat Res. 2001;486(4):217–47. doi: 10.1016/s0921-8777(01)00092-1 11516927.
2. McHugh PJ, Spanswick VJ, Hartley JA. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2001;2(8):483–90. doi: 10.1016/S1470-2045(01)00454-5 11905724.
3. Scharer OD. DNA interstrand crosslinks: natural and drug-induced DNA adducts that induce unique cellular responses. Chembiochem. 2005;6(1):27–32. doi: 10.1002/cbic.200400287 15637664.
4. Niraj J, Farkkila A, D'Andrea AD. The Fanconi Anemia Pathway in Cancer. Annu Rev Cancer Biol. 2019;3:457–78. Epub 2019/03/19. doi: 10.1146/annurev-cancerbio-030617-050422 30882047; PubMed Central PMCID: PMC6417835.
5. Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature. 2011;475(7354):53–8. doi: 10.1038/nature10192 21734703.
6. Rosado IV, Langevin F, Crossan GP, Takata M, Patel KJ. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nature structural & molecular biology. 2011;18(12):1432–4. doi: 10.1038/nsmb.2173 22081012.
7. Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem. 2003;278(33):31426–33. doi: 10.1074/jbc.M212549200 12775726.
8. Lehoczky P, McHugh PJ, Chovanec M. DNA interstrand cross-link repair in Saccharomyces cerevisiae. FEMS microbiology reviews. 2007;31(2):109–33. doi: 10.1111/j.1574-6976.2006.00046.x 17096663.
9. Duxin JP, Walter JC. What is the DNA repair defect underlying Fanconi anemia? Curr Opin Cell Biol. 2015;37:49–60. doi: 10.1016/j.ceb.2015.09.002 26512453; PubMed Central PMCID: PMC4688103.
10. Mulderrig L, Garaycoechea JI. XPF-ERCC1 protects liver, kidney and blood homeostasis outside the canonical excision repair pathways. PLoS Genet. 2020;16(4). doi: 10.1371/journal.pgen.1008555
11. Kashiyama K, Nakazawa Y, Pilz DT, Guo C, Shimada M, Sasaki K, et al. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am J Hum Genet. 2013;92(5):807–19. doi: 10.1016/j.ajhg.2013.04.007 23623389; PubMed Central PMCID: PMC3644632.
12. Bogliolo M, Schuster B, Stoepker C, Derkunt B, Su Y, Raams A, et al. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am J Hum Genet. 2013;92(5):800–6. doi: 10.1016/j.ajhg.2013.04.002 23623386; PubMed Central PMCID: PMC3644630.
13. Andersson BS, Sadeghi T, Siciliano MJ, Legerski R, Murray D. Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs. Cancer Chemother Pharmacol. 1996;38(5):406–16. doi: 10.1007/s002800050504 8765433.
14. Damia G, Imperatori L, Stefanini M, D'Incalci M. Sensitivity of CHO mutant cell lines with specific defects in nucleotide excision repair to different anti-cancer agents. Int J Cancer. 1996;66(6):779–83. doi: 10.1002/(SICI)1097-0215(19960611)66:6<779::AID-IJC12>3.0.CO;2-Z 8647649.
15. De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol. 2000;20(21):7980–90. doi: 10.1128/mcb.20.21.7980-7990.2000 11027268.
16. Klein Douwel D, Boonen RA, Long DT, Szypowska AA, Raschle M, Walter JC, et al. XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Molecular cell. 2014;54(3):460–71. Epub 2014/04/15. doi: 10.1016/j.molcel.2014.03.015 24726325.
17. Manandhar M, Boulware KS, Wood RD. The ERCC1 and ERCC4 (XPF) genes and gene products. Gene. 2015;569(2):153–61. Epub 2015/06/16. doi: 10.1016/j.gene.2015.06.026 26074087; PubMed Central PMCID: PMC4536074.
18. Lans H, Hoeijmakers JHJ, Vermeulen W, Marteijn JA. The DNA damage response to transcription stress. Nat Rev Mol Cell Biol. 2019;20(12):766–84. Epub 2019/09/29. doi: 10.1038/s41580-019-0169-4 31558824.
19. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15(7):465–81. Epub 2014/06/24. doi: 10.1038/nrm3822 24954209.
20. Chatzinikolaou G, Apostolou Z, Aid-Pavlidis T, Ioannidou A, Karakasilioti I, Papadopoulos GL, et al. ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes. Nat Cell Biol. 2017;19(5):421–32. Epub 2017/04/04. doi: 10.1038/ncb3499 28368372.
21. Murai M, Enokido Y, Inamura N, Yoshino M, Nakatsu Y, van der Horst GT, et al. Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne syndrome Group B DNA repair genes. Proc Natl Acad Sci U S A. 2001;98(23):13379–84. Epub 2001/11/01. doi: 10.1073/pnas.231329598 11687625; PubMed Central PMCID: PMC60879.
22. van der Pluijm I, Garinis GA, Brandt RM, Gorgels TG, Wijnhoven SW, Diderich KE, et al. Impaired genome maintenance suppresses the growth hormone—insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol. 2007;5(1):e2. Epub 2007/03/01. doi: 10.1371/journal.pbio.0050002 17326724; PubMed Central PMCID: PMC1698505.
23. Guervilly JH, Gaillard PH. SLX4: multitasking to maintain genome stability. Crit Rev Biochem Mol Biol. 2018;53(5):475–514. Epub 2018/10/05. doi: 10.1080/10409238.2018.1488803 30284473.
24. Pizzolato J, Mukherjee S, Scharer OD, Jiricny J. FANCD2-associated nuclease 1, but not exonuclease 1 or flap endonuclease 1, is able to unhook DNA interstrand cross-links in vitro. J Biol Chem. 2015;290(37):22602–11. doi: 10.1074/jbc.M115.663666 26221031; PubMed Central PMCID: PMC4566234.
25. Abdullah UB, McGouran JF, Brolih S, Ptchelkine D, El-Sagheer AH, Brown T, et al. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks. EMBO J. 2017;36(14):2047–60. doi: 10.15252/embj.201796664 28607004; PubMed Central PMCID: PMC5510000.
26. Kato N, Kawasoe Y, Williams H, Coates E, Roy U, Shi Y, et al. Sensing and Processing of DNA Interstrand Crosslinks by the Mismatch Repair Pathway. Cell Rep. 2017;21(5):1375–85. Epub 2017/11/02. doi: 10.1016/j.celrep.2017.10.032 29091773; PubMed Central PMCID: PMC5806701.
27. Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, Griffith JD, et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell. 2008;134(6):969–80. doi: 10.1016/j.cell.2008.08.030 18805090.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 4
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Molecular genetics of maternally-controlled cell divisions
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum