#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mms19 promotes spindle microtubule assembly in Drosophila neural stem cells


Autoři: Rohan Chippalkatti aff001;  Boris Egger aff003;  Beat Suter aff001
Působiště autorů: Cell Biology, University of Bern, Berne, Switzerland aff001;  Graduate School for Cellular and Biomedical Sciences, University of Bern, Berne, Switzerland aff002;  Department of Biology, University of Fribourg, Fribourg, Switzerland aff003
Vyšlo v časopise: Mms19 promotes spindle microtubule assembly in Drosophila neural stem cells. PLoS Genet 16(11): e1008913. doi:10.1371/journal.pgen.1008913
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008913

Souhrn

Mitotic divisions depend on the timely assembly and proper orientation of the mitotic spindle. Malfunctioning of these processes can considerably delay mitosis, thereby compromising tissue growth and homeostasis, and leading to chromosomal instability. Loss of functional Mms19 drastically affects the growth and development of mitotic tissues in Drosophila larvae and we now demonstrate that Mms19 is an important factor that promotes spindle and astral microtubule (MT) growth, and MT stability and bundling. Mms19 function is needed for the coordination of mitotic events and for the rapid progression through mitosis that is characteristic of neural stem cells. Surprisingly, Mms19 performs its mitotic activities through two different pathways. By stimulating the mitotic kinase cascade, it triggers the localization of the MT regulatory complex TACC/Msps (Transforming Acidic Coiled Coil/Minispindles, the homolog of human ch-TOG) to the centrosome. This activity of Mms19 can be rescued by stimulating the mitotic kinase cascade. However, other aspects of the Mms19 phenotypes cannot be rescued in this way, pointing to an additional mechanism of Mms19 action. We provide evidence that Mms19 binds directly to MTs and that this stimulates MT stability and bundling.

Klíčová slova:

Aurora – Cell cycle and cell division – Centrosomes – Larvae – Microtubules – Mitosis – Tubulins – Nuclear bodies


Zdroje

1. Wühr M, Chen Y, Dumont S, Groen AC, Needleman DJ, Salic A, et al. Evidence for an Upper Limit to Mitotic Spindle Length. Curr Biol. 2008. doi: 10.1016/j.cub.2008.07.092 18718761

2. Hara Y, Kimura A. Cell-Size-Dependent Spindle Elongation in the Caenorhabditis elegans Early Embryo. Curr Biol. 2009. doi: 10.1016/j.cub.2009.07.050 19682904

3. Crowder ME, Strzelecka M, Wilbur JD, Good MC, Von Dassow G, Heald R. A comparative analysis of spindle morphometrics across metazoans. Curr Biol. 2015. doi: 10.1016/j.cub.2015.04.036 26004761

4. Vargas-Hurtado D, Brault JB, Piolot T, Leconte L, Da Silva N, Pennetier C, et al. Differences in Mitotic Spindle Architecture in Mammalian Neural Stem Cells Influence Mitotic Accuracy during Brain Development. Curr Biol. 2019. doi: 10.1016/j.cub.2019.07.061 31495584

5. Prakash L, Prakash S. Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14 and MMS19. MGG Mol Gen Genet. 1979. doi: 10.1007/BF00333097 392238

6. Gari K, Ortiz AML, Borel V, Flynn H, Skehel JM, Boulton SJ. MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science (80-). 2012. doi: 10.1126/science.1219664 22678361

7. Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, Netz DJA, et al. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science (80-). 2012. doi: 10.1126/science.1219723 22678362

8. Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y, et al. MMXD, a TFIIH-Independent XPD-MMS19 Protein Complex Involved in Chromosome Segregation. Mol Cell. 2010;39: 632–640. doi: 10.1016/j.molcel.2010.07.029 20797633

9. Nag R, Niggli S, Sousa-Guimaraes S, Vazquez-Pianzola P, Suter B. Mms19 is a mitotic gene that permits Cdk7 to be fully active as a Cdk-activating kinase. Development. 2018;145. doi: 10.1242/dev.156802 29361561

10. Cameroni E, Stettler K, Suter B. On the traces of XPD: Cell cycle matters—untangling the genotype-phenotype relationship of XPD mutations. Cell Division. 2010. doi: 10.1186/1747-1028-5-24 20840796

11. Gogendeau D, Siudeja K, Gambarotto D, Pennetier C, Bardin AJ, Basto R. Aneuploidy causes premature differentiation of neural and intestinal stem cells. Nat Commun. 2015. doi: 10.1038/ncomms9894 26573328

12. Green P, Hartenstein AY, Hartenstein V. The embryonic development of the Drosophila visual system. Cell Tissue Res. 1993. doi: 10.1007/BF00333712 8402833

13. Meinertzhagen I, Hanson T. The development of the optic lobe. In: Bate M, Martiney-Arias A, editors The development of Drosophila melanogaster Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. 1993. pp. 1363–1491.

14. Zhu ZC, Gupta KK, Slabbekoorn AR, Paulson BA, Folker ES, Goodson H V. Interactions between EB1 and microtubules: Dramatic effect of affinity tags and evidence for cooperative behavior. J Biol Chem. 2009;284: 32651–32661. doi: 10.1074/jbc.M109.013466 19778897

15. Cheerambathur DK, Civelekoglu-Scholey G, Brust-Mascher I, Sommi P, Mogilner A, Scholey JM. Quantitative analysis of an anaphase B switch: Predicted role for a microtubule catastrophe gradient. J Cell Biol. 2007. doi: 10.1083/jcb.200611113 17576796

16. de Lartigue J, Brust-Mascher I, Scholey JM. Anaphase B spindle dynamics in Drosophila S2 cells: Comparison with embryo spindles. Cell Div. 2011. doi: 10.1186/1747-1028-6-8 21477279

17. Wang H, Brust-Mascher I, Scholey JM. The microtubule cross-linker Feo controls the midzone stability, motor composition, and elongation of the anaphase B spindle in Drosophila embryos. Mol Biol Cell. 2015. doi: 10.1091/mbc.E14-12-1631 25694445

18. Gallaud E, Caous R, Pascal A, Bazile F, Gagné JP, Huet S, et al. Ensconsin/map7 promotes microtubule growth and centrosome separation in Drosophila neural stem cells. J Cell Biol. 2014;204: 1111–1121. doi: 10.1083/jcb.201311094 24687279

19. Homem CCF, Knoblich JA. Drosophila neuroblasts: a model for stem cell biology. Development. 2012;139: 4297–4310. doi: 10.1242/dev.080515 23132240

20. Schuldt AJ, Adams JHJ, Davidson CM, Micklem DR, Haseloff J, St. Johnston D, et al. Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev. 1998. doi: 10.1101/gad.12.12.1847 9637686

21. Rolls MM, Albertson R, Shih HP, Lee CY, Doe CQ. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol. 2003. doi: 10.1083/jcb.200306079 14657233

22. Cabernard C, Doe CQ. Apical/Basal Spindle Orientation Is Required for Neuroblast Homeostasis and Neuronal Differentiation in Drosophila. Dev Cell. 2009. doi: 10.1016/j.devcel.2009.06.009 19619498

23. Lee CY, Andersen RO, Cabernard C, Manning L, Tran KD, Lanskey MJ, et al. Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev. 2006. doi: 10.1101/gad.1489406 17182871

24. Yang Y, Liu M, Li D, Ran J, Gao J, Suo S, et al. CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/ dynactin complex formation. Proc Natl Acad Sci U S A. 2014. doi: 10.1073/pnas.1319341111 24469800

25. Pearson CG, Bloom K. Dynamic microtubules lead the way for spindle positioning. Nature Reviews Molecular Cell Biology. 2004. doi: 10.1038/nrm1402 15173827

26. Giet R, McLean D, Descamps S, Lee MJ, Raff JW, Prigent C, et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol. 2002. doi: 10.1083/jcb.200108135 11827981

27. Bird AW, Hyman AA. Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. J Cell Biol. 2008. doi: 10.1083/jcb.200802005 18663142

28. Van Horn RD, Chu S, Fan L, Yin T, Du J, Beckmann R, et al. Cdk1 activity is required for mitotic activation of Aurora A during G 2/M transition of human cells. J Biol Chem. 2010. doi: 10.1074/jbc.M110.141010 20444701

29. Larochelle S, Pandur J, Fisher RP, Salz HK, Suter B. Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev. 1998. doi: 10.1101/gad.12.3.370 9450931

30. Larochelle S, Merrick KA, Terret ME, Wohlbold L, Barboza NM, Zhang C, et al. Requirements for Cdk7 in the Assembly of Cdk1/Cyclin B and Activation of Cdk2 Revealed by Chemical Genetics in Human Cells. Mol Cell. 2007. doi: 10.1016/j.molcel.2007.02.003 17386261

31. D’Angiolella V, Mari C, Nocera D, Rametti L, Grieco D. The spindle checkpoint requires cyclin-dependent kinase activity. Genes Dev. 2003. doi: 10.1101/gad.267603 14561775

32. Wang G, Jiang Q, Zhang C. The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. Journal of Cell Science. 2014. doi: 10.1242/jcs.151753 25128564

33. Magnaghi-Jaulin L, Eot-Houllier G, Gallaud E, Giet R. Aurora A Protein Kinase: To the Centrosome and Beyond. Biomolecules. 2019;9.

34. Hutterer A, Berdnik D, Wirtz-Peitz F, Žigman M, Schleiffer A, Knoblich JA. Mitotic Activation of the Kinase Aurora-A Requires Its Binding Partner Bora. Dev Cell. 2006. doi: 10.1016/j.devcel.2006.06.002 16890155

35. Lee MJ, Gergely F, Jeffers K, Peak-Chew SY, Raff JW. Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nat Cell Biol. 2001;3: 643–649. doi: 10.1038/35083033 11433296

36. Caous R, Pascal A, Romé P, Richard-Parpaillon L, Karess R, Giet R. Spindle assembly checkpoint inactivation fails to suppress neuroblast tumour formation in aurA mutant Drosophila. Nat Commun. 2015. doi: 10.1038/ncomms9879 26568519

37. Rebollo E, Sampaio P, Januschke J, Llamazares S, Varmark H, González C. Functionally Unequal Centrosomes Drive Spindle Orientation in Asymmetrically Dividing Drosophila Neural Stem Cells. Dev Cell. 2007. doi: 10.1016/j.devcel.2007.01.021 17336911

38. Tang N, Marshall WF. Centrosome positioning in vertebrate development. Journal of Cell Science. 2012. doi: 10.1242/jcs.038083 23277534

39. Walczak CE, Heald R. Mechanisms of Mitotic Spindle Assembly and Function. International Review of Cytology. 2008. doi: 10.1016/S0074-7696(07)65003-7(07)65003–7 18275887

40. Mottier-Pavie V, Cenci G, Vernì F, Gatti M, Bonaccorsi S. Phenotypic analysis of misatofunction reveals roles of noncentrosomal microtubules in Drosophila spindle formation. J Cell Sci. 2011. doi: 10.1242/jcs.072348 21285248

41. Van Wietmarschen N, Moradian A, Morin GB, Lansdorp PM, Uringa EJ. The mammalian proteins MMS19, MIP18, and ANT2 are involved in cytoplasmic iron-sulfur cluster protein assembly. J Biol Chem. 2012. doi: 10.1074/jbc.M112.431270 23150669

42. Yeom E, Hong ST, Choi KW. Crumbs interacts with Xpd for nuclear division control in Drosophila. Oncogene. 2015;34: 2777–2789. doi: 10.1038/onc.2014.202 25065591

43. Hwang JH, Vuong LT, Choi KW. Crumbs, Galla and Xpd are required for Kinesin-5 regulation in mitosis and organ growth in Drosophila. J Cell Sci. 2020. doi: 10.1242/jcs.246801 32501288

44. Amos L. Spindle Assembly: Kinesin-5 Is in Control. Current Biology. 2008. doi: 10.1016/j.cub.2008.10.045 19108775

45. Chen J, Larochelle S, Li X, Suter B. Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature. 2003; 228–232. doi: 10.1038/nature01746 12853965

46. Li X, Urwyler O, Suter B. Drosophila Xpd regulates Cdk7 localization, mitotic kinase activity, spindle dynamics, and chromosome segregation. PLoS Genet. 2010. doi: 10.1371/journal.pgen.1000876 20300654

47. Daul AL, Komori H, Lee CY. Immunofluorescent staining of Drosophila larval brain tissue. Cold Spring Harb Protoc. 2010;5. doi: 10.1101/pdb.prot5460 20647364

48. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9: 676–682. doi: 10.1038/nmeth.2019 22743772

49. Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, et al. TrakEM2 software for neural circuit reconstruction. PLoS One. 2012. doi: 10.1371/journal.pone.0038011 22723842

50. Lee T, Luo L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends in Neurosciences. 2001. doi: 10.1016/s0166-2236(00)01791-4 11311363

51. Cabernard C, Doe CQ. Live imaging of neuroblast lineages within intact larval brains in Drosophila. Cold Spring Harb Protoc. 2013;2013: 970–977. doi: 10.1101/pdb.prot078162 24086057

52. Engel H, Mika M, Denapaite D, Hakenbeck R, Muḧlemann K, Heller M, et al. A low-affinity penicillin-binding protein 2x variant is required for heteroresistance in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2014. doi: 10.1128/AAC.02547-14 24777105

53. Egger B, Van Giesen L, Moraru M, Sprecher SG. In vitro imaging of primary neural cell culture from Drosophila. Nat Protoc. 2013. doi: 10.1038/nprot.2013.052 23598446

54. Dernburg AF. In situ hybridization to somatic chromosomes in drosophila. Cold Spring Harb Protoc. 2011. doi: 10.1101/pdb.top065540 21880819


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#