A phenome-wide association study of 26 mendelian genes reveals phenotypic expressivity of common and rare variants within the general population
Autoři:
Catherine Tcheandjieu aff001; Matthew Aguirre aff002; Stefan Gustafsson aff001; Priyanka Saha aff001; Praneetha Potiny aff001; Melissa Haendel aff005; Erik Ingelsson aff001; Manuel A. Rivas aff004; James R. Priest aff001
Působiště autorů:
Stanford Cardiovascular Institute, Stanford University, Stanford, Stanford, California, United States of America
aff001; Department of Pediatric Cardiology Stanford University School of Medicine, Stanford, California, United States of America
aff002; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
aff003; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, United States of America
aff004; Department of Medical Informatics and Clinical Epidemiology, School of Medicine, Oregon Health & Science University (OHSU), Oregon, United States of America
aff005; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
aff006; Stanford Diabetes Research Center, Stanford University, Stanford, California, United States of America
aff007; Chan-Zuckerberg Biohub, San Francisco, California, United States of America
aff008
Vyšlo v časopise:
A phenome-wide association study of 26 mendelian genes reveals phenotypic expressivity of common and rare variants within the general population. PLoS Genet 16(11): e1008802. doi:10.1371/journal.pgen.1008802
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008802
Souhrn
The clinical evaluation of a genetic syndrome relies upon recognition of a characteristic pattern of signs or symptoms to guide targeted genetic testing for confirmation of the diagnosis. However, individuals displaying a single phenotype of a complex syndrome may not meet criteria for clinical diagnosis or genetic testing. Here, we present a phenome-wide association study (PheWAS) approach to systematically explore the phenotypic expressivity of common and rare alleles in genes associated with four well-described syndromic diseases (Alagille (AS), Marfan (MS), DiGeorge (DS), and Noonan (NS) syndromes) in the general population.
Using human phenotype ontology (HPO) terms, we systematically mapped 60 phenotypes related to AS, MS, DS and NS in 337,198 unrelated white British from the UK Biobank (UKBB) based on their hospital admission records, self-administrated questionnaires, and physiological measurements. We performed logistic regression adjusting for age, sex, and the first 5 genetic principal components, for each phenotype and each variant in the target genes (JAG1, NOTCH2 FBN1, PTPN1 and RAS-opathy genes, and genes in the 22q11.2 locus) and performed a gene burden test.
Overall, we observed multiple phenotype-genotype correlations, such as the association between variation in JAG1, FBN1, PTPN11 and SOS2 with diastolic and systolic blood pressure; and pleiotropy among multiple variants in syndromic genes. For example, rs11066309 in PTPN11 was significantly associated with a lower body mass index, an increased risk of hypothyroidism and a smaller size for gestational age, all in concordance with NS-related phenotypes. Similarly, rs589668 in FBN1 was associated with an increase in body height and blood pressure, and a reduced body fat percentage as observed in Marfan syndrome.
Our findings suggest that the spectrum of associations of common and rare variants in genes involved in syndromic diseases can be extended to individual phenotypes within the general population.
Klíčová slova:
Adipose tissue – Alleles – Blood pressure – Body Mass Index – Genetics of disease – Hypothyroidism – Marfan syndrome – Phenotypes
Zdroje
1. Manrai AK, Funke BH, Rehm HL, Olesen MS, Maron BA, Szolovits P, et al. Genetic Misdiagnoses and the Potential for Health Disparities. N Engl J Med. 2016;375: 655–665. doi: 10.1056/NEJMsa1507092 27532831
2. Whiffin N, Minikel E, Walsh R, O’Donnell-Luria AH, Karczewski K, Ing AY, et al. Using high-resolution variant frequencies to empower clinical genome interpretation. Genet Med. 2017;19: 1151–1158. doi: 10.1038/gim.2017.26 28518168
3. Wright CF, West B, Tuke M, Jones SE, Patel K, Laver TW, et al. Assessing the Pathogenicity, Penetrance, and Expressivity of Putative Disease-Causing Variants in a Population Setting. Am J Hum Genet. 2019;104: 275. doi: 10.1016/j.ajhg.2018.12.015 30665703
4. Bastarache L, Hughey JJ, Hebbring S, Marlo J, Zhao W, Ho WT, et al. Phenotype risk scores identify patients with unrecognized mendelian disease patterns. Science (80-). 2018;359: 1233–1239. doi: 10.1126/science.aal4043 29590070
5. Priest JR, Ceresnak SR, Dewey FE, Malloy-Walton LE, Dunn K, Grove ME, et al. Molecular diagnosis of long QT syndrome at 10 days of life by rapid whole genome sequencing. Hear Rhythm. 2014;11: 1707–13. doi: 10.1016/j.hrthm.2014.06.030 24973560
6. Priest JR, Osoegawa K, Mohammed N, Nanda V, Kundu R, Schultz K, et al. De Novo and Rare Variants at Multiple Loci Support the Oligogenic Origins of Atrioventricular Septal Heart Defects. PLoS Genet. 2016;12: e1005963. doi: 10.1371/journal.pgen.1005963 27058611
7. Minikel EV, Vallabh SM, Lek M, Estrada K, Samocha KE, Sathirapongsasuti JF, et al. Quantifying prion disease penetrance using large population control cohorts. Sci Transl Med. 2016;8: 322ra9–322ra9. doi: 10.1126/scitranslmed.aad5169 26791950
8. Mallawaarachchi AC, Furlong TJ, Shine J, Harris PC, Cowley MJ. Population data improves variant interpretation in autosomal dominant polycystic kidney disease. Genet Med. 2018; 1. doi: 10.1038/s41436-018-0324-x 30369598
9. Regan K, Wang K, Doughty E, Li H, Li J, Lee Y, et al. Translating Mendelian and complex inheritance of Alzheimer’s disease genes for predicting unique personal genome variants. J Am Med Informatics Assoc. 2012;19: 306–316. doi: 10.1136/amiajnl-2011-000656 22319180
10. Groza T, Köhler S, Moldenhauer D, Vasilevsky N, Baynam G, Zemojtel T, et al. The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease. Am J Hum Genet. 2015;97: 111–124. doi: 10.1016/j.ajhg.2015.05.020 26119816
11. Freund MK, Burch KS, Shi H, Mancuso N, Kichaev G, Garske KM, et al. Phenotype-Specific Enrichment of Mendelian Disorder Genes near GWAS Regions across 62 Complex Traits. Am J Hum Genet. 2018;103: 535–552. doi: 10.1016/j.ajhg.2018.08.017 30290150
12. Lobo M, Lamurias A, Couto FM. Identifying Human Phenotype Terms by Combining Machine Learning and Validation Rules. Biomed Res Int. 2017;2017: 1–8. doi: 10.1155/2017/8565739 29250549
13. Moncini S, Bonati MT, Morella I, Ferrari L, Brambilla R, Riva P. Differential allelic expression of SOS1 and hyperexpression of the activating SOS1 c.755C variant in a Noonan syndrome family. Eur J Hum Genet. 2015;23: 1531–7. doi: 10.1038/ejhg.2015.20 25712082
14. Kamath BM, Bason L, Piccoli DA, Krantz ID, Spinner NB. Consequences of JAG1 mutations. J Med Genet. 2003;40: 891–5. doi: 10.1136/jmg.40.12.891 14684686
15. Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank. 2015;13: 311–319. doi: 10.1089/bio.2015.0032 26484571
16. Davis MR, Arner E, Duffy CRE, De Sousa PA, Dahlman I, Arner P, et al. Expression of FBN1 during adipogenesis: Relevance to the lipodystrophy phenotype in Marfan syndrome and related conditions. Mol Genet Metab. 2016;119: 174–85. doi: 10.1016/j.ymgme.2016.06.009 27386756
17. Salvi P, Grillo A, Marelli S, Gao L, Salvi L, Viecca M, et al. Aortic dilatation in Marfan syndrome. J Hypertens. 2018;36: 77–84. doi: 10.1097/HJH.0000000000001512 29210860
18. Aubart M, Gazal S, Arnaud P, Benarroch L, Gross M-S, Buratti J, et al. Association of modifiers and other genetic factors explain Marfan syndrome clinical variability. Eur J Hum Genet. 2018;26: 1759–1772. doi: 10.1038/s41431-018-0164-9 30087447
19. Hutchinson S, Furger A, Halliday D, Judge DP, Jefferson A, Dietz HC, et al. Allelic variation in normal human FBN1 expression in a family with Marfan syndrome: a potential modifier of phenotype? Hum Mol Genet. 2003;12: 2269–76. doi: 10.1093/hmg/ddg241 12915484
20. Castel SE, Cervera A, Mohammadi P, Aguet F, Reverter F, Wolman A, et al. Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. Nat Genet. 2018;50: 1327–1334. doi: 10.1038/s41588-018-0192-y 30127527
21. Jongmans M, Otten B, Noordam K, van der Burgt I. Genetics and Variation in Phenotype in Noonan Syndrome. Horm Res Paediatr. 2004;62: 56–59. doi: 10.1159/000080500 15539800
22. Freire BL, Homma TK, Funari MFA, Lerario AM, Vasques GA, Malaquias AC, et al. Multigene sequencing analysis of children born small for gestational age with isolated short stature. J Clin Endocrinol Metab. 2019 [cited 29 Mar 2019]. doi: 10.1210/jc.2018-01971 30602027
23. Lee MJ, Kim BY, Ma JS, Choi YE, Kim YO, Cho HJ, et al. Hashimoto thyroiditis with an unusual presentation of cardiac tamponade in Noonan syndrome. Korean J Pediatr. 2016;59: S112–S115. doi: 10.3345/kjp.2016.59.11.S112 28018461
24. Şıklar Z, Berberoğlu M. Syndromic disorders with short stature. J Clin Res Pediatr Endocrinol. 2014;6: 1–8. doi: 10.4274/Jcrpe.1149 24637303
25. Cote GJ, Grubbs EG, Hofmann M-C. Thyroid C-Cell Biology and Oncogenic Transformation. Recent Results Cancer Res. 2015;204: 1–39. doi: 10.1007/978-3-319-22542-5_1 26494382
26. Quaio CRDC, Carvalho JF, da Silva CA, Bueno C, Brasil AS, Pereira AC, et al. Autoimmune disease and multiple autoantibodies in 42 patients with RASopathies. Am J Med Genet A. 2012;158A: 1077–82. doi: 10.1002/ajmg.a.35290 22488759
27. Couser NL, Keelean-Fuller D, Davenport ML, Haverfield E, Masood MM, Henin M, et al. Cleft palate and hypopituitarism in a patient with Noonan-like syndrome with loose anagen hair-1. Am J Med Genet Part A. 2018;176: 2024–2027. doi: 10.1002/ajmg.a.40432 30240112
28. Cessans C, Ehlinger V, Arnaud C, Yart A, Capri Y, Barat P, et al. Growth patterns of patients with Noonan syndrome: Correlation with age and genotype. Eur J Endocrinol. 2016;174: 641–650. doi: 10.1530/EJE-15-0922 26903553
29. Loerakker S, Stassen OMJA, Ter Huurne FM, Boareto M, Bouten CVC, Sahlgren CM. Mechanosensitivity of Jagged-Notch signaling can induce a switch-type behavior in vascular homeostasis. Proc Natl Acad Sci U S A. 2018;115: E3682–E3691. doi: 10.1073/pnas.1715277115 29610298
30. Hofmann JJ, Zovein AC, Koh H, Radtke F, Weinmaster G, Iruela-Arispe ML. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development. 2010;137: 4061–72. doi: 10.1242/dev.052118 21062863
31. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLOS Med. 2015;12: e1001779. doi: 10.1371/journal.pmed.1001779 25826379
32. Collins R. What makes UK Biobank special? Lancet. 2012;379: 1173–1174. doi: 10.1016/S0140-6736(12)60404-8 22463865
33. DeBoever C, Tanigawa Y, Lindholm ME, McInnes G, Lavertu A, Ingelsson E, et al. Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. Nat Commun. 2018;9: 1612. doi: 10.1038/s41467-018-03910-9 29691392
34. McInnes G, Tanigawa Y, DeBoever C, Lavertu A, Olivieri JE, Aguirre M, et al. Global Biobank Engine: enabling genotype-phenotype browsing for biobank summary statistics. bioRxiv. 2018.
35. Pang C, Sollie A, Sijtsma A, Hendriksen D, Charbon B, de Haan M, et al. SORTA: a system for ontology-based re-coding and technical annotation of biomedical phenotype data. Database. 2015;2015: bav089. doi: 10.1093/database/bav089 26385205
36. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45: D896–D901. doi: 10.1093/nar/gkw1133 27899670
37. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88: 76–82. doi: 10.1016/j.ajhg.2010.11.011 21167468
38. Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X. Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet. 2013;92: 841–53. doi: 10.1016/j.ajhg.2013.04.015 23684009
39. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89: 82–93. doi: 10.1016/j.ajhg.2011.05.029 21737059
40. Richardson TG, Campbell C, Timpson NJ, Gaunt TR. Incorporating Non-Coding Annotations into Rare Variant Analysis. Wang J, editor. One PLoS. 2016;11: e0154181. doi: 10.1371/journal.pone.0154181 27128317
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 11
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- A genetic variant controls interferon-β gene expression in human myeloid cells by preventing C/EBP-β binding on a conserved enhancer
- A complementary study approach unravels novel players in the pathoetiology of Hirschsprung disease
- A C. elegans Zona Pellucida domain protein functions via its ZPc domain
- Stability of SARS-CoV-2 phylogenies