A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome
Autoři:
Benjamin L. S. Furman aff001; Caroline M. S. Cauret aff001; Martin Knytl aff001; Xue-Ying Song aff001; Tharindu Premachandra aff001; Caleb Ofori-Boateng aff004; Danielle C. Jordan aff005; Marko E. Horb aff005; Ben J. Evans aff001
Působiště autorů:
Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
aff001; Department of Zoology, University of British Columbia, 6270 University Blvd Vancouver, British Columbia, V6T 1Z4 Canada
aff002; Department of Cell Biology, Charles University, 7 Vinicna Street, Prague, 12843, Czech Republic
aff003; CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana
aff004; Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543 USA
aff005
Vyšlo v časopise:
A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet 16(11): e1009121. doi:10.1371/journal.pgen.1009121
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009121
Souhrn
In many species, sexual differentiation is a vital prelude to reproduction, and disruption of this process can have severe fitness effects, including sterility. It is thus interesting that genetic systems governing sexual differentiation vary among—and even within—species. To understand these systems more, we investigated a rare example of a frog with three sex chromosomes: the Western clawed frog, Xenopus tropicalis. We demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a very similar genomic location as a previously known female-determining factor on the W chromosome. Nucleotide polymorphism of expressed transcripts suggests genetic degeneration on the W chromosome, emergence of a new Y chromosome from an ancestral Z chromosome, and natural co-mingling of the W, Z, and Y chromosomes in the same population. Compared to the rest of the genome, a small sex-associated portion of the sex chromosomes has a 50-fold enrichment of transcripts with male-biased expression during early gonadal differentiation. Additionally, X. tropicalis has sex-differences in the rates and genomic locations of recombination events during gametogenesis that are similar to at least two other Xenopus species, which suggests that sex differences in recombination are genus-wide. These findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes, demonstrate that several characteristics of old and established sex chromosomes (e.g., nucleotide divergence, sex biased expression) can arise well before sex chromosomes become cytogenetically distinguished, and show how these characteristics can have lingering consequences that are carried forward through sex chromosome turnovers.
Klíčová slova:
Genomics – Ghana – Sex chromosomes – Single nucleotide polymorphisms – X chromosomes – Y chromosomes – W chromosomes – Z chromosomes
Zdroje
1. Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, et al. Sex determination: Why so many ways of doing it? PLoS Biology. 2014;12(7):e1001899. doi: 10.1371/journal.pbio.1001899 24983465
2. Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science. 1999;286(5441):964–967. doi: 10.1126/science.286.5441.964 10542153
3. Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science. 2014;346(6215):1246338. doi: 10.1126/science.1246338 25504727
4. Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, et al. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proceedings of the National Academy of Sciences. 2006;103(48):18190–18195. doi: 10.1073/pnas.0605274103 17110446
5. Bachtrog D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nature Reviews Genetics. 2013;14(2):113–124. doi: 10.1038/nrg3366 23329112
6. Wright AE, Dean R, Zimmer F, Mank JE. How to make a sex chromosome. Nature Communications. 2016;7(1):1–8. doi: 10.1038/ncomms12087
7. Deakin J. Chromosome evolution in marsupials. Genes. 2018;9(2):72. doi: 10.3390/genes9020072
8. Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genetics. 2012;8(7):e1002798. doi: 10.1371/journal.pgen.1002798 22807687
9. Adolfsson S, Ellegren H. Lack of dosage compensation accompanies the arrested stage of sex chromosome evolution in ostriches. Molecular Biology and Evolution. 2013;30(4):806–810. doi: 10.1093/molbev/mst009 23329687
10. Perrin N. Sex reversal: A fountain of youth for sex chromosomes? Evolution: International Journal of Organic Evolution. 2009;63(12):3043–3049. doi: 10.1111/j.1558-5646.2009.00837.x 19744117
11. Vicoso B, Kaiser VB, Bachtrog D. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proceedings of the National Academy of Sciences. 2013;110(16):6453–6458. doi: 10.1073/pnas.1217027110 23547111
12. Bull JJ. Evolution of sex determining mechanisms. The Benjamin/Cummings Publishing Company, Inc.; 1983.
13. Volff JN, Nanda I, Schmid M, Schartl M. Governing sex determination in fish: Regulatory putsches and ephemeral dictators. Sexual Development. 2007;1(2):85–99. doi: 10.1159/000100030 18391519
14. Miura I. An evolutionary witness: The frog Rana rugosa underwent change of heterogametic sex from XY male to ZW female. Sexual Development. 2007;1(6):323–331. doi: 10.1159/000111764 18391544
15. Jeffries DL, Lavanchy G, Sermier R, Sredl MJ, Miura I, Borzée A, et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nature Communications. 2018;9(1):4088. doi: 10.1038/s41467-018-06517-2 30291233
16. Saunders PA, Neuenschwander S, Perrin N. Impact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogamety. Heredity. 2019;123(3):419–428. doi: 10.1038/s41437-019-0225-z 31028370
17. Vicoso B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nature Ecology and Evolution. 2019; p. 1–10. 31768022
18. Myosho T, Takehana Y, Hamaguchi S, Sakaizumi M. Turnover of sex chromosomes in celebensis group medaka fishes. G3: Genes, Genomes, Genetics. 2015;5(12):2685–2691. doi: 10.1534/g3.115.021543 26497145
19. Tennessen JA, Wei N, Straub SC, Govindarajulu R, Liston A, Ashman TL. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biology. 2018;16(8):e2006062. doi: 10.1371/journal.pbio.2006062 30148831
20. Yano A, Nicol B, Jouanno E, Quillet E, Fostier A, Guyomard R, et al. The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evolutionary applications. 2013;6(3):486–496. doi: 10.1111/eva.12032 23745140
21. Blaser O, Grossen C, Neuenschwander S, Perrin N. Sex-chromosome turnovers induced by deleterious mutation load. Evolution: International Journal of Organic Evolution. 2013;67(3):635–645. 23461315
22. Blaser O, Neuenschwander S, Perrin N. Sex-chromosome turnovers: The hot-potato model. The American Naturalist. 2014;183(1):140–146. doi: 10.1086/674026 24334743
23. Evans BJ, Pyron RA, Wiens JJ. Polyploidization and sex chromosome evolution in amphibians. In: Polyploidy and Genome Evolution. Springer; 2012. p. 385–410.
24. Pennell MW, Mank JE, Peichel CL. Transitions in sex determination and sex chromosomes across vertebrate species. Molecular Ecology. 2018;27(19):3950–3963. doi: 10.1111/mec.14540 29451715
25. Cauret CM, Gansauge MT, Tupper AS, Furman BL, Knytl M, Song XY, et al. Developmental systems drift and the drivers of sex chromosome evolution. Molecular Biology and Evolution. 2020;37(3):799–810. doi: 10.1093/molbev/msz268 31710681
26. Green DM, Zeyl CW, Sharbel TF. The evolution of hypervariable sex and supernumerary (B) chromosomes in the relict New Zealand frog, Leiopelma hochstetteri. Journal of Evolutionary Biology. 1993;6(3):417–441. doi: 10.1046/j.1420-9101.1993.6030417.x
27. Roco ÁS, Olmstead AW, Degitz SJ, Amano T, Zimmerman LB, Bullejos M. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proceedings of the National Academy of Sciences. 2015;112(34):E4752–E4761. doi: 10.1073/pnas.1505291112
28. Olmstead AW, Lindberg-Livingston A, Degitz SJ. Genotyping sex in the amphibian, Xenopus (Silurana) tropicalis, for endocrine disruptor bioassays. Aquatic Toxicology. 2010;98(1):60–66. doi: 10.1016/j.aquatox.2010.01.012 20202696
29. Mitros T, Lyons J, Session A, Jenkins J, Shu S, Kwon T, et al. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Developmental Biology. 2019.
30. Tymowska J. Polyploidy and cytogenetic variation in frogs of the genus Xenopus. Amphibian cytogenetics and evolution. 1991;259:297.
31. Bewick AJ, Chain FJ, Zimmerman LB, Sesay A, Gilchrist MJ, Owens ND, et al. A large pseudoautosomal region on the sex chromosomes of the frog Silurana tropicalis. Genome Biology and Evolution. 2013;5(6):1087–1098. doi: 10.1093/gbe/evt073 23666865
32. Evans BJ, Gansauge MT, Stanley EL, Furman BL, Cauret CM, Ofori-Boateng C, et al. Xenopus fraseri: Mr. Fraser, where did your frog come from? PloS One. 2019;14(9).
33. Grainger RM. Xenopus tropicalis as a model organism for genetics and genomics: Past, present, and future. In: Xenopus Protocols. Springer; 2012. p. 3–15.
34. Blum M, Ott T. Xenopus: an undervalued model organism to study and model human genetic disease. Cells Tissues Organs. 2018;205(5-6):303–313. doi: 10.1159/000490898 30092565
35. Showell C, Conlon FL. The Western clawed frog (Xenopus tropicalis): An emerging vertebrate model for developmental genetics and environmental toxicology. Cold Spring Harbor Protocols. 2009;2009(9):pdb–emo131. doi: 10.1101/pdb.emo131 20147259
36. Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, et al. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proceedings of the National Academy of Sciences. 2008;105(7):2469–2474. doi: 10.1073/pnas.0712244105 18268317
37. Song XY, Furman BL, Premachandra T, Knytl M, Cauret CMS, Wasonga DV, et al. Sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus). Philosophical Transactions of the Royal Society B;in press.
38. Furman BLS, Evans BJ. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3: Genes|Genomes|Genetics. 2016;6(11):3625–3633. doi: 10.1534/g3.116.033423 27605520
39. Tinsley R, Loumont C, Kobel H. Geographical distribution and ecology. In: Tinsley R, Kobel H, editors. The Biology of Xenopus. Oxford: Clarendon Press; 1996. p. 35–41.
40. Miller CS, Gosling WD. Quaternary forest associations in lowland tropical West Africa. Quaternary Science Reviews. 2014;84:7–25. doi: 10.1016/j.quascirev.2013.10.027
41. Demenou BB, Doucet JL, Hardy OJ. History of the fragmentation of the African rain forest in the Dahomey Gap: Insight from the demographic history of Terminalia superba. Heredity. 2018;120(6):547–561. doi: 10.1038/s41437-017-0035-0 29279603
42. Düsing K. The regulation of the gender ratio in the multiplication of the people, animals and plants. Fischer; 1884.
43. Fisher RA. The genetical theory of natural selection. The Clarendon Press; 1958.
44. Hamilton WD. Extraordinary sex ratios. Science. 1967;156(3774):477–488. doi: 10.1126/science.156.3774.477 6021675
45. Vuilleumier S, Lande R, Van Alphen J, Seehausen O. Invasion and fixation of sex-reversal genes. Journal of Evolutionary Biology. 2007;20(3):913–920. doi: 10.1111/j.1420-9101.2007.01311.x 17465902
46. Bateman A, Anholt B. Maintenance of polygenic sex determination in a fluctuating environment: an individual-based model. Journal of Evolutionary Biology. 2017;30(5):915–925. doi: 10.1111/jeb.13054 28187242
47. Bewick AJ, Anderson DW, Evans BJ. Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution: International Journal of Organic Evolution. 2011;65(3):698–712. doi: 10.1111/j.1558-5646.2010.01163.x
48. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, et al. The genome of the Western Clawed Frog Xenopus tropicalis. Science. 2010;328(5978):633–636. doi: 10.1126/science.1183670 20431018
49. Chain FJ. Sex-biased expression of young genes in Silurana (Xenopus) tropicalis. Cytogenetic and Genome Research. 2015;145(3-4):265–277. doi: 10.1159/000430942 26065714
50. Kitano J, Kakioka R, Ishikawa A, Toyoda A, Kusakabe M. Differences in the contributions of sex-linkage and androgen regulation to sex-biased gene expression in juvenile and adult sticklebacks. Journal of Evolutionary Biology. 2020;. doi: 10.1111/jeb.13662 32533720
51. Bull JJ, Charnov EL. Changes in the heterogametic mechanism of sex determination. Heredity. 1977;39(1):1. 268319
52. Charlesworth B, Coyne JA, Barton NH. The relative rates of evolution of sex chromosomes and autosomes. The American Naturalist. 1987;130(1):113–146. doi: 10.1086/284701
53. Vicoso B, Charlesworth B. Effective population size and the faster-X effect: an extended model. Evolution: International Journal of Organic Evolution. 2009;63(9):2413–2426. doi: 10.1111/j.1558-5646.2009.00719.x
54. Malcom JW, Kudra RS, Malone JH. The sex chromosomes of frogs: Variability and tolerance offer clues to genome evolution and function. Journal of Genomics. 2014;2:68. doi: 10.7150/jgen.8044 25031658
55. Furman BL, Dang UJ, Evans BJ, Golding GB. Divergent subgenome evolution after allopolyploidization in African clawed frogs (Xenopus). Journal of Evolutionary Biology. 2018;31(12):1945–1958. doi: 10.1111/jeb.13391 30341989
56. Ottolini CS, Newnham LJ, Capalbo A, Natesan SA, Joshi HA, Cimadomo D, et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nature Genetics. 2015;47(7):727. doi: 10.1038/ng.3306 25985139
57. Sardell JM, Cheng C, Dagilis AJ, Ishikawa A, Kitano J, Peichel CL, et al. Sex differences in recombination in sticklebacks. G3: Genes, Genomes, Genetics. 2018;8(6):1971–1983. doi: 10.1534/g3.118.200166 29632132
58. Brelsford A, Dufresnes C, Perrin N. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity. 2016;116(2):177. doi: 10.1038/hdy.2015.83 26374238
59. Berset-Brändli L, Jaquiéry J, Broquet T, Ulrich Y, Perrin N. Extreme heterochiasmy and nascent sex chromosomes in European tree frogs. Proceedings of the Royal Society B: Biological Sciences. 2008;275(1642):1577–1585. doi: 10.1098/rspb.2008.0298 18426748
60. Theodosiou L, McMillan W, Puebla O. Recombination in the eggs and sperm in a simultaneously hermaphroditic vertebrate. Proceedings of the Royal Society B: Biological Sciences. 2016;283(1844):20161821. doi: 10.1098/rspb.2016.1821 27974520
61. Sutherland BJ, Rico C, Audet C, Bernatchez L. Sex chromosome evolution, heterochiasmy, and physiological QTL in the salmonid brook charr Salvelinus fontinalis. G3: Genes, Genomes, Genetics. 2017;7(8):2749–2762. doi: 10.1534/g3.117.040915 28626004
62. Sardell JM, Kirkpatrick M. Sex differences in the recombination landscape. The American Naturalist. 2020;195(2):361–379. doi: 10.1086/704943 32017625
63. Brandvain Y, Coop G. Scrambling eggs: meiotic drive and the evolution of female recombination rates. Genetics. 2012;190(2):709–723. doi: 10.1534/genetics.111.136721 22143919
64. Charlesworth B, Charlesworth D. The degeneration of Y chromosomes. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences. 2000;355(1403):1563–1572. doi: 10.1098/rstb.2000.0717 11127901
65. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3(10):e3376. doi: 10.1371/journal.pone.0003376 18852878
66. Rungger D. Xenopus helveticus, an endangered species? International Journal of Developmental Biology. 2002;46(1):49–63. 11902687
67. Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, et al. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PloS One. 2011;6(4):e19315. doi: 10.1371/journal.pone.0019315 21541297
68. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014; p. btu170. doi: 10.1093/bioinformatics/btu170 24695404
69. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi: 10.1093/bioinformatics/btp324 19451168
70. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352 19505943
71. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–2993. doi: 10.1093/bioinformatics/btr509 21903627
72. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics. 2016;17(2):81. doi: 10.1038/nrg.2015.28 26729255
73. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PloS One. 2014;9(2):e90346. doi: 10.1371/journal.pone.0090346 24587335
74. Goudet J, Raymond M, de Meeüs T, Rousset F. Testing differentiation in diploid populations. Genetics. 1996;144(4):1933–1940. 8978076
75. Skotte L, Korneliussen TS, Albrechtsen A. Estimating individual admixture proportions from next generation sequencing data. Genetics. 2013;195(3):693–702. doi: 10.1534/genetics.113.154138 24026093
76. Jakobsson M, Rosenberg NA. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23(14):1801–1806. doi: 10.1093/bioinformatics/btm233 17485429
77. Bhatia G, Patterson N, Sankararaman S, Price AL. Estimating and interpreting FST: The impact of rare variants. Genome Research. 2013;23(9):1514–1521. doi: 10.1101/gr.154831.113 23861382
78. Nieuwkoop PD. Normal table of Xenopus laevis (Daudin). Normal table of Xenopus laevis (Daudin). 1956; p. 162–203.
79. Bray NL, Pimentel Haroldand Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology. 2016;34(5):525–527. doi: 10.1038/nbt.3519 27043002
80. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. doi: 10.1093/bioinformatics/btp616 19910308
81. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8 25516281
82. Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. 2019;35(12):2084–2092. doi: 10.1093/bioinformatics/bty895 30395178
83. Wu TD, Watanabe CK. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21(9):1859–1875. doi: 10.1093/bioinformatics/bti310 15728110
84. Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in biosciences. 2012;131(4):281–285. doi: 10.1007/s12064-012-0162-3 22872506
85. Signorell A, et al. DescTools: Tools for Descriptive Statistics; 2020. Available from: https://cran.r-project.org/package=DescTools.
86. Margarido GRA, de Souza AP, Garcia AAF. OneMap: Software for genetic mapping in outcrossing species. Hereditas. 2007;144:78–79. doi: 10.1111/j.2007.0018-0661.02000.x 17663699
87. R Core Team. R: A Language and Environment for Statistical Computing; 2016. Available from: https://www.R-project.org/.
88. Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, et al. Xenbase: a genomic, epigenomic and transcriptomic model organism database. Nucleic Acids Research. 2018;46(D1):D861–D868. doi: 10.1093/nar/gkx936 29059324
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 11
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Raději si zajděte na oční! Jak souvisí citlivost zraku s rozvojem demence?
- Co způsobuje pooperační infekce? Na vině může být i naše vlastní mikrobiota
- Čeká nás průlom v diagnostice karcinomu pankreatu?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
Nejčtenější v tomto čísle
- Stability of SARS-CoV-2 phylogenies
- Formal commentary
- No association between SCN9A and monogenic human epilepsy disorders
- Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis