In vivo miRNA knockout screening identifies miR-190b as a novel tumor suppressor
Autoři:
Hui Hong aff001; Shun Yao aff003; Yuanyuan Zhang aff005; Yi Ye aff003; Cheng Li aff007; Liang Hu aff001; Yihua Sun aff001; Hsin-Yi Huang aff003; Hongbin Ji aff003; Liang Hu aff003
Působiště autorů:
Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
aff001; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
aff002; State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
aff003; University of Chinese Academy of Sciences, Beijing, China
aff004; BIOPIC and School of Life Sciences, Peking University, Beijing, China
aff005; School of Life Science and Technology, Shanghai Tech University, Shanghai, China
aff006; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China
aff007; Center for Statistical Science, Center for Bioinformatics, Peking University, Beijing, China
aff008
Vyšlo v časopise:
In vivo miRNA knockout screening identifies miR-190b as a novel tumor suppressor. PLoS Genet 16(11): e32767. doi:10.1371/journal.pgen.1009168
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009168
Souhrn
MicroRNAs (miRNAs) play important roles in the development of various cancers including lung cancer which is one of the devastating diseases worldwide. How miRNAs function in de novo lung tumorigenesis remains largely unknown. We here developed a CRISPR/Cas9-mediated dual guide RNA (dgRNA) system to knockout miRNAs in genetically engineered mouse model (GEMM). Through bioinformatic analyses of human lung cancer miRNA database, we identified 16 downregulated miRNAs associated with malignant progression and performed individual knockout with dgRNA system in KrasG12D/Trp53L/L (KP) mouse model. Using this in vivo knockout screening, we identified miR-30b and miR-146a, which has been previously reported as tumor suppressors and miR-190b, a new tumor-suppressive miRNA in lung cancer development. Over-expression of miR-190b in KP model as well as human lung cancer cell lines significantly suppressed malignant progression. We further found that miR-190b targeted the Hus1 gene and knockout of Hus1 in KP model dramatically suppressed lung tumorigenesis. Collectively, our study developed an in vivo miRNA knockout platform for functionally screening in GEMM and identified miR-190b as a new tumor suppressor in lung cancer.
Klíčová slova:
Breast cancer – Carcinogenesis – Genetically modified animals – Guide RNA – Lung and intrathoracic tumors – MicroRNAs – Mouse models – Secondary lung tumors
Zdroje
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. Epub 2019/01/09. doi: 10.3322/caac.21551 30620402.
2. Castro D, Moreira M, Gouveia AM, Pozza DH, De Mello RA. MicroRNAs in lung cancer. Oncotarget. 2017;8(46):81679–85. Epub 2017/11/09. doi: 10.18632/oncotarget.20955 29113423; PubMed Central PMCID: PMC5655318.
3. Kanwal R, Plaga AR, Liu X, Shukla GC, Gupta S. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett. 2017;407:9–20. Epub 2017/08/22. doi: 10.1016/j.canlet.2017.08.011 28823964.
4. Asghariazar V, Sakhinia E, Mansoori B, Mohammadi A, Baradaran B. Tumor suppressor microRNAs in lung cancer: An insight to signaling pathways and drug resistance. J Cell Biochem. 2019;120(12):19274–89. Epub 2019/08/01. doi: 10.1002/jcb.29295 31364210.
5. Liu W, Li H, Wang Y, Zhao X, Guo Y, Jin J, et al. MiR-30b-5p functions as a tumor suppressor in cell proliferation, metastasis and epithelial-to-mesenchymal transition by targeting G-protein subunit alpha-13 in renal cell carcinoma. Gene. 2017;626:275–81. Epub 2017/05/26. doi: 10.1016/j.gene.2017.05.040 28536082.
6. Li Q, Zhang X, Li N, Liu Q, Chen D. miR-30b inhibits cancer cell growth, migration, and invasion by targeting homeobox A1 in esophageal cancer. Biochem Biophys Res Commun. 2017;485(2):506–12. Epub 2017/02/13. doi: 10.1016/j.bbrc.2017.02.016 28189678.
7. Zhu ED, Li N, Li BS, Li W, Zhang WJ, Mao XH, et al. miR-30b, down-regulated in gastric cancer, promotes apoptosis and suppresses tumor growth by targeting plasminogen activator inhibitor-1. PLoS One. 2014;9(8):e106049. Epub 2014/08/30. doi: 10.1371/journal.pone.0106049 25170877; PubMed Central PMCID: PMC4149503.
8. Zhao H, Xu Z, Qin H, Gao Z, Gao L. miR-30b regulates migration and invasion of human colorectal cancer via SIX1. Biochem J. 2014;460(1):117–25. Epub 2014/03/07. doi: 10.1042/BJ20131535 24593661.
9. Chen G, Umelo IA, Lv S, Teugels E, Fostier K, Kronenberger P, et al. miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells. PLoS One. 2013;8(3):e60317. Epub 2013/04/05. doi: 10.1371/journal.pone.0060317 23555954; PubMed Central PMCID: PMC3608584.
10. Wang RJ, Zheng YH, Wang P, Zhang JZ. Serum miR-125a-5p, miR-145 and miR-146a as diagnostic biomarkers in non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8(1):765–71. Epub 2015/03/11. 25755772; PubMed Central PMCID: PMC4348919.
11. Iacona JR, Lutz CS. miR-146a-5p: Expression, regulation, and functions in cancer. Wiley Interdiscip Rev RNA. 2019:e1533. Epub 2019/03/22. doi: 10.1002/wrna.1533 30895717.
12. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. Epub 2013/01/05. doi: 10.1126/science.1231143 23287718; PubMed Central PMCID: PMC3795411.
13. Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14(12):8096–106. Epub 1994/12/01. doi: 10.1128/mcb.14.12.8096 7969147; PubMed Central PMCID: PMC359348.
14. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9. Epub 2013/09/03. doi: 10.1016/j.cell.2013.08.021 23992846; PubMed Central PMCID: PMC3856256.
15. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015;160(6):1246–60. Epub 2015/03/10. doi: 10.1016/j.cell.2015.02.038 25748654; PubMed Central PMCID: PMC4380877.
16. Sanchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature. 2014;516(7531):428–31. Epub 2014/10/23. doi: 10.1038/nature13906 25337879; PubMed Central PMCID: PMC4292871.
17. Wu Q, Tian Y, Zhang J, Tong X, Huang H, Li S, et al. In vivo CRISPR screening unveils histone demethylase UTX as an important epigenetic regulator in lung tumorigenesis. Proc Natl Acad Sci U S A. 2018;115(17):E3978–E86. Epub 2018/04/11. doi: 10.1073/pnas.1716589115 29632194; PubMed Central PMCID: PMC5924887.
18. Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res. 2006;34(8):2294–304. Epub 2006/05/13. doi: 10.1093/nar/gkl183 16690972; PubMed Central PMCID: PMC1459537.
19. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005;438(7068):685–9. Epub 2005/11/01. doi: 10.1038/nature04303 16258535.
20. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6. Epub 2007/08/19. doi: 10.1038/nmeth1079 17694064; PubMed Central PMCID: PMC3857099.
21. Vidigal JA, Ventura A. Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nat Commun. 2015;6:8083. Epub 2015/08/19. doi: 10.1038/ncomms9083 26278926; PubMed Central PMCID: PMC4544769.
22. Zhu S, Li W, Liu J, Chen CH, Liao Q, Xu P, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol. 2016;34(12):1279–86. Epub 2016/11/01. doi: 10.1038/nbt.3715 27798563; PubMed Central PMCID: PMC5592164.
23. Adikusuma F, Pfitzner C, Thomas PQ. Versatile single-step-assembly CRISPR/Cas9 vectors for dual gRNA expression. PLoS One. 2017;12(12):e0187236. Epub 2017/12/07. doi: 10.1371/journal.pone.0187236 29211736; PubMed Central PMCID: PMC5718404.
24. Yang J, Meng X, Pan J, Jiang N, Zhou C, Wu Z, et al. CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biol. 2018;15(1):35–43. Epub 2017/10/14. doi: 10.1080/15476286.2017.1391443 29028415; PubMed Central PMCID: PMC5785983.
25. Yin Z, Cui Z, Ren Y, Xia L, Li H, Zhou B. MiR-146a polymorphism correlates with lung cancer risk in Chinese nonsmoking females. Oncotarget. 2017;8(2):2275–83. Epub 2016/12/03. doi: 10.18632/oncotarget.13722 27911870; PubMed Central PMCID: PMC5356798.
26. Ma YS, Yu F, Zhong XM, Lu GX, Cong XL, Xue SB, et al. miR-30 Family Reduction Maintains Self-Renewal and Promotes Tumorigenesis in NSCLC-Initiating Cells by Targeting Oncogene TM4SF1. Mol Ther. 2018;26(12):2751–65. Epub 2018/10/12. doi: 10.1016/j.ymthe.2018.09.006 30301667; PubMed Central PMCID: PMC6277537.
27. Han X, Li F, Fang Z, Gao Y, Li F, Fang R, et al. Transdifferentiation of lung adenocarcinoma in mice with Lkb1 deficiency to squamous cell carcinoma. Nat Commun. 2014;5:3261. Epub 2014/02/18. doi: 10.1038/ncomms4261 24531128; PubMed Central PMCID: PMC3929783.
28. Li F, Han X, Li F, Wang R, Wang H, Gao Y, et al. LKB1 Inactivation Elicits a Redox Imbalance to Modulate Non-small Cell Lung Cancer Plasticity and Therapeutic Response. Cancer Cell. 2015;27(5):698–711. Epub 2015/05/06. doi: 10.1016/j.ccell.2015.04.001 25936644; PubMed Central PMCID: PMC4746728.
29. Nagy A, Lanczky A, Menyhart O, Gyorffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets (vol 8, 9227, 2018). Sci Rep-Uk. 2018;8. ARTN 11515 doi: 10.1038/s41598-018-29514-3 WOS:000439807700001. 30046141
30. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314. Epub 2013/10/02. doi: 10.1146/annurev-pathol-012513-104715 24079833; PubMed Central PMCID: PMC4009396.
31. Lieberman HB, Bernstock JD, Broustas CG, Hopkins KM, Leloup C, Zhu A. The role of RAD9 in tumorigenesis. J Mol Cell Biol. 2011;3(1):39–43. Epub 2011/02/01. doi: 10.1093/jmcb/mjq039 21278450; PubMed Central PMCID: PMC3107465.
32. de la Torre J, Gil-Moreno A, Garcia A, Rojo F, Xercavins J, Salido E, et al. Expression of DNA damage checkpoint protein Hus1 in epithelial ovarian tumors correlates with prognostic markers. Int J Gynecol Pathol. 2008;27(1):24–32. Epub 2007/12/25. doi: 10.1097/pgp.0b013e31812dfaef 18156970.
33. Zhou ZQ, Zhao JJ, Chen CL, Liu Y, Zeng JX, Wu ZR, et al. HUS1 checkpoint clamp component (HUS1) is a potential tumor suppressor in primary hepatocellular carcinoma. Mol Carcinog. 2019;58(1):76–87. Epub 2018/09/06. doi: 10.1002/mc.22908 30182378.
34. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–7. Epub 2013/12/18. doi: 10.1126/science.1247005 24336571; PubMed Central PMCID: PMC4089965.
35. Gan L, Sun T, Li B, Tian J, Zhang J, Chen X, et al. Serum miR-146a and miR-150 as Potential New Biomarkers for Hip Fracture-Induced Acute Lung Injury. Mediators Inflamm. 2018;2018:8101359. Epub 2018/12/05. doi: 10.1155/2018/8101359 30510490; PubMed Central PMCID: PMC6230404.
36. Zagryazhskaya A, Zhivotovsky B. miRNAs in lung cancer: a link to aging. Ageing Res Rev. 2014;17:54–67. Epub 2014/03/19. doi: 10.1016/j.arr.2014.02.009 24631464.
37. Cizeron-Clairac G, Lallemand F, Vacher S, Lidereau R, Bieche I, Callens C. MiR-190b, the highest up-regulated miRNA in ERalpha-positive compared to ERalpha-negative breast tumors, a new biomarker in breast cancers? BMC Cancer. 2015;15:499. Epub 2015/07/05. doi: 10.1186/s12885-015-1505-5 26141719; PubMed Central PMCID: PMC4491222.
38. Lu S, Kong H, Hou Y, Ge D, Huang W, Ou J, et al. Two plasma microRNA panels for diagnosis and subtype discrimination of lung cancer. Lung Cancer. 2018;123:44–51. Epub 2018/08/10. doi: 10.1016/j.lungcan.2018.06.027 30089594.
39. Patnaik SK, Yendamuri S, Kannisto E, Kucharczuk JC, Singhal S, Vachani A. MicroRNA expression profiles of whole blood in lung adenocarcinoma. PLoS One. 2012;7(9):e46045. Epub 2012/10/03. doi: 10.1371/journal.pone.0046045 23029380; PubMed Central PMCID: PMC3460960.
40. Dore AS, Kilkenny ML, Rzechorzek NJ, Pearl LH. Crystal structure of the rad9-rad1-hus1 DNA damage checkpoint complex—implications for clamp loading and regulation. Mol Cell. 2009;34(6):735–45. Epub 2009/05/19. doi: 10.1016/j.molcel.2009.04.027 19446481.
41. Lim PX, Patel DR, Poisson KE, Basuita M, Tsai C, Lyndaker AM, et al. Genome Protection by the 9-1-1 Complex Subunit HUS1 Requires Clamp Formation, DNA Contacts, and ATR Signaling-independent Effector Functions. J Biol Chem. 2015;290(24):14826–40. Epub 2015/04/26. doi: 10.1074/jbc.M114.630640 25911100; PubMed Central PMCID: PMC4463431.
42. Ngo GH, Lydall D. The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. Nucleic Acids Res. 2015;43(10):5017–32. Epub 2015/05/01. doi: 10.1093/nar/gkv409 25925573; PubMed Central PMCID: PMC4446447.
43. Ngo GH, Balakrishnan L, Dubarry M, Campbell JL, Lydall D. The 9-1-1 checkpoint clamp stimulates DNA resection by Dna2-Sgs1 and Exo1. Nucleic Acids Res. 2014;42(16):10516–28. Epub 2014/08/15. doi: 10.1093/nar/gku746 25122752; PubMed Central PMCID: PMC4176354.
44. Francia S, Weiss RS, Hande MP, Freire R, d'Adda di Fagagna F. Telomere and telomerase modulation by the mammalian Rad9/Rad1/Hus1 DNA-damage-checkpoint complex. Curr Biol. 2006;16(15):1551–8. Epub 2006/08/08. doi: 10.1016/j.cub.2006.06.066 16890531.
45. Kinzel B, Hall J, Natt F, Weiler J, Cohen D. Downregulation of Hus1 by antisense oligonucleotides enhances the sensitivity of human lung carcinoma cells to cisplatin. Cancer. 2002;94(6):1808–14. Epub 2002/03/29. doi: 10.1002/cncr.10383 11920544.
46. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179. Epub 2005/11/30. doi: 10.1093/nar/gni178 16314309; PubMed Central PMCID: PMC1292995.
47. Chen HC, Chen GH, Chen YH, Liao WL, Liu CY, Chang KP, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer. 2009;100(6):1002–11. Epub 2009/03/19. doi: 10.1038/sj.bjc.6604948 19293812; PubMed Central PMCID: PMC2661776.
48. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature. 2007;448(7155):807–10. Epub 2007/08/07. doi: 10.1038/nature06030 17676035.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 11
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- A genetic variant controls interferon-β gene expression in human myeloid cells by preventing C/EBP-β binding on a conserved enhancer
- A complementary study approach unravels novel players in the pathoetiology of Hirschsprung disease
- A C. elegans Zona Pellucida domain protein functions via its ZPc domain
- Stability of SARS-CoV-2 phylogenies