#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A genetic variant controls interferon-β gene expression in human myeloid cells by preventing C/EBP-β binding on a conserved enhancer


Autoři: Anaïs Assouvie aff001;  Maxime Rotival aff002;  Juliette Hamroune aff003;  Didier Busso aff004;  Paul-Henri Romeo aff001;  Lluís Quintana-Murci aff002;  Germain Rousselet aff001
Působiště autorů: Laboratoire Réparation et Transcription dans les cellules Souches, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France aff001;  Unit of Human Evolutionary Genetics, CNRS UMR2000, Institut Pasteur, Paris, France aff002;  Plate-forme Génomique, Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France aff003;  CIGEx, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France aff004;  Chair Human Genomics & Evolution, Collège de France, Paris, France aff005
Vyšlo v časopise: A genetic variant controls interferon-β gene expression in human myeloid cells by preventing C/EBP-β binding on a conserved enhancer. PLoS Genet 16(11): e1009090. doi:10.1371/journal.pgen.1009090
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009090

Souhrn

Interferon β (IFN-β) is a cytokine that induces a global antiviral proteome, and regulates the adaptive immune response to infections and tumors. Its effects strongly depend on its level and timing of expression. Therefore, the transcription of its coding gene IFNB1 is strictly controlled. We have previously shown that in mice, the TRIM33 protein restrains Ifnb1 transcription in activated myeloid cells through an upstream inhibitory sequence called ICE. Here, we show that the deregulation of Ifnb1 expression observed in murine Trim33-/- macrophages correlates with abnormal looping of both ICE and the Ifnb1 gene to a 100 kb downstream region overlapping the Ptplad2/Hacd4 gene. This region is a predicted myeloid super-enhancer in which we could characterize 3 myeloid-specific active enhancers, one of which (E5) increases the response of the Ifnb1 promoter to activation. In humans, the orthologous region contains several single nucleotide polymorphisms (SNPs) known to be associated with decreased expression of IFNB1 in activated monocytes, and loops to the IFNB1 gene. The strongest association is found for the rs12553564 SNP, located in the E5 orthologous region. The minor allele of rs12553564 disrupts a conserved C/EBP-β binding motif, prevents binding of C/EBP-β, and abolishes the activation-induced enhancer activity of E5. Altogether, these results establish a link between a genetic variant preventing binding of a transcription factor and a higher order phenotype, and suggest that the frequent minor allele (around 30% worldwide) might be associated with phenotypes regulated by IFN-β expression in myeloid cells.

Klíčová slova:

Bone marrow cells – Gene expression – Luciferase – Macrophages – Mammalian genomics – Monocytes – Single nucleotide polymorphisms – Transcription factors


Zdroje

1. Müller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M. Functional role of type I and type II interferons in antiviral defense. Science 1994;264:1918–21. doi: 10.1126/science.8009221 8009221

2. McNab F, Mayer-Barber K, Sher A, Wack A, Type I interferons in infectious disease. Nat. Rev. Immunol. 2015;15:87–103. doi: 10.1038/nri3787 25614319

3. Schoggins JW. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 2011;1:519–525. doi: 10.1016/j.coviro.2011.10.008 22328912

4. Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc. Natl. Acad. Sci. U. S. A. 1998;95: 15623–8. doi: 10.1073/pnas.95.26.15623 9861020

5. Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, Gewert D, et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol. 2003;4:1009–1015. doi: 10.1038/ni978 14502286

6. Montoya M, Schiavoni G, Mattei F, Gresser I, Belardelli F, Borrow P, et al. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood. 2002;99: 3263–3271. doi: 10.1182/blood.v99.9.3263 11964292

7. Welsh RM, Bahl K, Marshall HD, Urban SL. Type 1 Interferons and Antiviral CD8 T-Cell Responses. Plos Pathog. 2012;8:e1002352. doi: 10.1371/journal.ppat.1002352 22241987

8. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res. 2011;71:2488–2496. doi: 10.1158/0008-5472.CAN-10-2820 21300764

9. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity. 2014;41:843–852. doi: 10.1016/j.immuni.2014.10.019 25517616

10. Vanpouille-Box C., Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 2017; 8:15618. doi: 10.1038/ncomms15618 28598415

11. Wang X, Schoenhals JE, Li A, Valdecanas DR, Ye H, Zang F, et al. Suppression of Type I IFN Signaling in Tumors Mediates Resistance to Anti-PD-1 Treatment That Can Be Overcome by Radiotherapy. Cancer Res. 2017;77:839–850. doi: 10.1158/0008-5472.CAN-15-3142 27821490

12. Formenti SC, Rudqvist N-P, Golden E, Cooper B, Wennerberg E, Lhuillier C, et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 2018;24:1845–1851. doi: 10.1038/s41591-018-0232-2 30397353

13. Crouse J, Kalinke U, Oxenius A. Regulation of antiviral T cell responses by type I interferons. Nat. Rev. Immunol. 2015;15:231–242. doi: 10.1038/nri3806 25790790

14. Crow YJ, Manel N. Aicardi–Goutières syndrome and the type I interferonopathies. Nat. Rev. Immunol. 2015;15:429–440. doi: 10.1038/nri3850 26052098

15. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell. 2000;103:667–78. doi: 10.1016/s0092-8674(00)00169-0 11106736

16. Panne D, Maniatis T, Harrison SC. An Atomic Model of the Interferon-β Enhanceosome. Cell. 2007;129:1111–1123. doi: 10.1016/j.cell.2007.05.019 17574024

17. Ford E, Thanos D. The transcriptional code of human IFN-beta gene expression. Biochim Biophys Acta. 2010;1799:328–336. doi: 10.1016/j.bbagrm.2010.01.010 20116463

18. Goh FG, Thomson SJP, Krausgruber T, Lanfrancotti A, Copley RR, Udalova IA. Beyond the enhanceosome: cluster of novel κB sites downstream of the human IFN-β gene is essential for lipopolysaccharide-induced gene activation. Blood. 2010;116:5580–8. doi: 10.1182/blood-2010-05-282285 20855868

19. Zeng L, Liu Y-P, Sha H, Chen H, Qi L, Smith JA. XBP-1 couples endoplasmic reticulum stress to augmented IFN-beta induction via a cis-acting enhancer in macrophages. J Immunol. 2010;185:2324–2330. doi: 10.4049/jimmunol.0903052 20660350

20. Klar M, Bode J. Enhanceosome formation over the beta interferon promoter underlies a remote-control mechanism mediated by YY1 and YY2. Mol. Cell. Biol. 2005;25:10159–70. doi: 10.1128/MCB.25.22.10159-10170.2005 16260628

21. Josse T, Mokrani-Benhelli H, Benferhat H, Shestakova E, Mansuroglu Z, Kakanakou H, et al. Association of the interferon-β gene with pericentromeric heterochromatin is dynamically regulated during virus infection through a YY1-dependent mechanism. Nucleic Acids Res. 2012;40:4396–4411. doi: 10.1093/nar/gks050 22287632

22. Marcato V, Luron L, Laqueuvre LM, Simon D, Mansuroglu Z, Flamand M, et al. β-Catenin Upregulates the Constitutive and Virus-Induced Transcriptional Capacity of the Interferon Beta Promoter through T-Cell Factor Binding Sites. Mol. Cell. Biol. 36, 13–29 (2015). doi: 10.1128/MCB.00641-15 26459757

23. Banerjee AR, Kim YJ, Kim TH. A novel virus-inducible enhancer of the interferon-β gene with tightly linked promoter and enhancer activities. Nucleic Acids Res. 2014;42:12537–12554. doi: 10.1093/nar/gku1018 25348400

24. Ferri F, Parcelier A, Petit V, Gallouet A-S, Lewandowski D, Dalloz M, et al. TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation. Nat. Commun. 2015;6:8900. doi: 10.1038/ncomms9900 26592194

25. Hatakeyama S. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis. Trends Biochem. Sci. 2017;42:297–311. doi: 10.1016/j.tibs.2017.01.002 28118948

26. Agricola E, Randall RA, Gaarenstroom T, Dupont S, Hill CS. Recruitment of TIF1γ to chromatin via its PHD finger-bromodomain activates its ubiquitin ligase and transcriptional repressor activities. Mol. Cell. 2011;43:85–96. doi: 10.1016/j.molcel.2011.05.020 21726812

27. Ransom DG, Bahary N, Niss K, Traver D, Burns C, Trede NS, et al. The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis. PLoS Biol. 2004;2:E237. doi: 10.1371/journal.pbio.0020237 15314655

28. Aucagne R, Droin N, Paggetti J, Lagrange B, Largeot A, Hammann A, et al. Transcription intermediary factor 1gamma is a tumor suppressor in mouse and human chronic myelomonocytic leukemia. J Clin Invest. 2011;121:2361–2370. doi: 10.1172/JCI45213 21537084

29. Kusy S, Gault N, Ferri F, Lewandowski D, Barroca V, Jaracz-Ros A, et al. Adult hematopoiesis is regulated by TIF1γ, a repressor of TAL1 and PU.1 transcriptional activity. Cell Stem Cell. 2011;8:412–25. doi: 10.1016/j.stem.2011.02.005 21474105

30. Monteiro R, Pouget C, Patient R. The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1γ. EMBO J. 2011;30:1093–1103. doi: 10.1038/emboj.2011.34 21336259

31. Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M, et al. Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell. 2005;121:87–99. doi: 10.1016/j.cell.2005.01.033 15820681

32. Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell. 2009;136:123–135. doi: 10.1016/j.cell.2008.10.051 19135894

33. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MAS, Massagué J. Hematopoiesis Controlled by Distinct TIF1γ and Smad4 Branches of the TGFβ Pathway. Cell. 2006;125:929–941. doi: 10.1016/j.cell.2006.03.045 16751102

34. Xi Q, Wang Z, Zaromytidou A-I, Zhang XH-F, Chow-Tsang L-F, Liu JX, et al. A Poised Chromatin Platform for TGF-β Access to Master Regulators. Cell. 2011;147:1511–1524. doi: 10.1016/j.cell.2011.11.032 22196728

35. Rajderkar S, Mann JM, Panaretos C, Yumoto K, Li H-D, Mishina Y, et al., Trim33 is required for appropriate development of pre-cardiogenic mesoderm. Dev. Biol. 2019;450:101–114. doi: 10.1016/j.ydbio.2019.03.018 30940539

36. Rivero-Hinojosa S, Kang S, Lobanenkov VV, Zentner GE. Testis-specific transcriptional regulators selectively occupy BORIS-bound CTCF target regions in mouse male germ cells. Sci. Rep. 2017;7:41279. doi: 10.1038/srep41279 28145452

37. Nikolic T, Movita D, Lambers MEH, Ribeiro de Almeida C, Biesta P, Kreefft K, et al. The DNA-binding factor Ctcf critically controls gene expression in macrophages. Cell. Mol. Immunol. 2014;11:58–70. doi: 10.1038/cmi.2013.41 24013844

38. Stadhouders R, Kolovos P, Brouwer R, Zuin J, van den Heuvel A, Kockx C, et al., Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nat. Protoc. 2013;8:509–524. doi: 10.1038/nprot.2013.018 23411633

39. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19. doi: 10.1016/j.cell.2013.03.035 23582322

40. Hah N, Benner C, Chong L-W, Yu RT, Downes M, Evans RM. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E297–302. doi: 10.1073/pnas.1424028112 25564661

41. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, et al., Chromatin state dynamics during blood formation. Science 2014;345:943–949. doi: 10.1126/science.1256271 25103404

42. Zhang H, Alberich-Jorda M, Amabile G, Yang H, Staber PB, Di Ruscio A, et al. Sox4 Is a Key Oncogenic Target in C/EBPα Mutant Acute Myeloid Leukemia. Cancer Cell. 2013;24:575–588. doi: 10.1016/j.ccr.2013.09.018 24183681

43. Barish GD, Yu RT, Karunasiri M, Ocampo CB, Dixon J, Benner C, et al., Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response. Genes Dev. 2010;24:2760–2765. doi: 10.1101/gad.1998010 21106671

44. The ENCODE project Consortium, An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi: 10.1038/nature11247 22955616

45. Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, et al. Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression. Science (80-. ). 2014;343:1246949. doi: 10.1126/science.1246949 24604202

46. Quach H, Rotival M, Pothlichet J, Eddie Loh Y-H, Dannemann M, Zidane N, et al. Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations. Cell. 2016;167:643–656. doi: 10.1016/j.cell.2016.09.024 27768888

47. Wen X, Luca F, Pique-Regi R. Cross-population joint analysis of eQTLs: fine mapping and functional annotation. Plos Genet. 2015;11:e1005176. doi: 10.1371/journal.pgen.1005176 25906321

48. Hnisz D., et al., Super-enhancers in the control of cell identity and disease. Cell 155, 934–47 (2013). doi: 10.1016/j.cell.2013.09.053 24119843

49. Phanstiel D. H., et al., Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development. Mol. Cell 67, 1037–1048.e6 (2017). doi: 10.1016/j.molcel.2017.08.006 28890333

50. Guo Y, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, et al. CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function. Cell 162, 900–910 (2015). doi: 10.1016/j.cell.2015.07.038 26276636

51. Huber R, Pietsch D, Panterodt T, Brand K. Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Cell. Signal. 2012;24:1287–1296. doi: 10.1016/j.cellsig.2012.02.007 22374303

52. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46:D260–D266. doi: 10.1093/nar/gkx1126 29140473

53. Pham T-H, Benner C, Lichtinger M, Schwarzfischer L, Hu Y, Andreesen R, et al. Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood. 2012;119:e161–e171. doi: 10.1182/blood-2012-01-402453 22550342

54. Siewert KM, Voight BF. Detecting long-term balancing selection using allele frequency correlation. Mol. Biol. Evol. 2017;34:2996–3005. doi: 10.1093/molbev/msx209 28981714

55. Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: Implications for cancer therapy. Nat. Rev. Cancer. 2016;16:131–144. doi: 10.1038/nrc.2016.14 26911188

56. Howie BN, Donnelly P, Marchini J. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLoS Genet. 2009;5:e1000529. doi: 10.1371/journal.pgen.1000529 19543373

57. Shabalin AA, Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012;28:1353–1358. doi: 10.1093/bioinformatics/bts163 22492648

58. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14. doi: 10.1186/gb-2010-11-2-r14 20132535

59. Zerbino DR, Wilder SP, Johnson N, Juettemann T, Flicek PR. The Ensembl regulatory build. Genome Biol. 2015;16:56. doi: 10.1186/s13059-015-0621-5 25887522

60. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput. Biol. 2010;6:e1001025. doi: 10.1371/journal.pcbi.1001025 21152010

61. Assouvie A, Daley-Bauer LP, Rousselet G. Growing Murine Bone Marrow-Derived Macrophages. Methods Mol. Biol. 2018;1784:29–33. doi: 10.1007/978-1-4939-7837-3_3 29761385

62. Kelly A, Grabiec AM, Travis MA. Culture of Human Monocyte-Derived Macrophages. Methods Mol. Biol. 2018;1784:1–11. doi: 10.1007/978-1-4939-7837-3_1 29761383

63. Rousselet G. Chromatin Immunoprecipitation in Macrophages. Methods Mol. Biol. 2018;1784:177–186. doi: 10.1007/978-1-4939-7837-3_17 29761399

64. Perrin S, Firmo C, Lemoine S, Le Crom S, Jourdren L. Aozan: an automated post-sequencing data-processing pipeline. Bioinformatics. 2017;33:212–2213. doi: 10.1093/bioinformatics/btx154 28369225

65. Ye T, Krebs AR, Choukrallah M-A, Keime C, Plewniak F, et al. seqMINER: an integrated ChIP-seq data interpretation platform. Nucleic Acids Res. 2011;39:e35. doi: 10.1093/nar/gkq1287 21177645


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#