Gtsf1 is essential for proper female sex determination and transposon silencing in the silkworm, Bombyx mori
Autoři:
Kai Chen aff001; Ye Yu aff001; Dehong Yang aff001; Xu Yang aff001; Linmeng Tang aff001; Yujia Liu aff001; Xingyu Luo aff001; James R. Walter aff003; Zulian Liu aff001; Jun Xu aff001; Yongping Huang aff001
Působiště autorů:
Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
aff001; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
aff002; Department of Ecology and Evolutionary Biology, University of Kansas, NV, United States of America
aff003
Vyšlo v časopise:
Gtsf1 is essential for proper female sex determination and transposon silencing in the silkworm, Bombyx mori. PLoS Genet 16(11): e32767. doi:10.1371/journal.pgen.1009194
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009194
Souhrn
Sex determination pathways are astoundingly diverse in insects. For instance, the silk moth Bombyx mori uniquely use various components of the piRNA pathway to produce the Fem signal for specification of the female fate. In this study, we identified BmGTSF1 as a novel piRNA factor which participates in B. mori sex determination. We found that BmGtsf1 has a distinct expression pattern compared to Drosophila and mouse. CRISPR/Cas9 induced mutation in BmGtsf1 resulted in partial sex reversal in genotypically female animals by shifting expression of the downstream targets BmMasc and Bmdsx to the male pattern. As levels of Fem piRNAs were substantially reduced in female mutants, we concluded that BmGtsf1 plays a critical role in the biogenesis of the feminizing signal. We also demonstrated that BmGTSF1 physically interacted with BmSIWI, a protein previously reported to be involved in female sex determination, indicating BmGTSF1 function as the cofactor of BmSIWI. BmGtsf1 mutation resulted in piRNA pathway dysregulation, including piRNA biogenesis defects and transposon derepression, suggesting BmGtsf1 is also a piRNA factor in the silkworm. Furthermore, we found that BmGtsf1 mutation leads to gametogenesis defects in both male and female. Our data suggested that BmGtsf1 is a new component involved in the sex determination pathway in B. mori.
Klíčová slova:
Drosophila melanogaster – Gonads – Immunoprecipitation – Immunostaining – Ovaries – Sex determination – Silkworms – Transposable elements
Zdroje
1. Bachtrog D, Mank J, Peichel C, Kirkpatrick M, Otto S, Ashman T, et al. Sex Determination: Why So Many Ways of Doing It? PLoS biology. 2014;12(7):e1001899. doi: 10.1371/journal.pbio.1001899 24983465
2. Bopp D, Saccone G, Beye M. Sex determination in insects: variations on a common theme. Sex Dev. 2014;8(1–3):20–28. doi: 10.1159/000356458 24335049
3. Gempe T and Beye M. Function and evolution of sex determination mechanisms, genes and pathways in insects. Bioessays. 2011;33(1):52–60. doi: 10.1002/bies.201000043 21110346
4. Salz HK. Sex determination in insects: a binary decision based on alternative splicing. Curr Opin Genet Dev. 2011;21(4):395–400. doi: 10.1016/j.gde.2011.03.001 21474300
5. Salz HK and Erickson JW. Sex determination in Drosophila: The view from the top. Fly (Austin). 2010;4(1):60–70. doi: 10.4161/fly.4.1.11277 20160499
6. Erickson JW, Quintero JJ. Indirect effects of ploidy suggest X chromosome dose, not the X: A ratio, signals sex in Drosophila. PLoS Biol. 2007;5(12):e332. doi: 10.1371/journal.pbio.0050332 18162044
7. González AN, Lu H, Erickson JW. A shared enhancer controls a temporal switch between promoters during Drosophila primary sex determination. Proc Natl Acad Sci U S A. 2008;105(47):18436–18441. doi: 10.1073/pnas.0805993105 19011108
8. Harrison DA. Sex determination: controlling the master. Curr Biol. 2007;17(9):R328–330. doi: 10.1016/j.cub.2007.03.012 17470347
9. Siera SG, Cline TW. Sexual back talk with evolutionary implications: stimulation of the Drosophila sex-determination gene sex-lethal by its target transformer. Genetics. 2008;180(4):1963–1981. doi: 10.1534/genetics.108.093898 18845845
10. Evans DS, Cline TW. Drosophila switch gene Sex-lethal can bypass its switch-gene target transformer to regulate aspects of female behavior. Proc Natl Acad Sci U S A. 2013;110(47):E4474–E4481. doi: 10.1073/pnas.1319063110 24191002
11. Johnson ML, Nagengast AA, Salz HK. PPS, a large multidomain protein, functions with sex-lethal to regulate alternative splicing in Drosophila. PLoS Genet. 2010;6(3):e1000872. doi: 10.1371/journal.pgen.1000872 20221253
12. Moschall R, Gaik M, Medenbach J. Promiscuity in post-transcriptional control of gene expression: Drosophila sex-lethal and its regulatory partnerships. FEBS Lett. 2017;591(11):1471–1488. doi: 10.1002/1873-3468.12652 28391641
13. Traut W, Sahara K, Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 2007;1(6):332–346. doi: 10.1159/000111765 18391545
14. Abe H, Fujii T, Tanaka N, Yokoyama T, Kakehashi H, Ajimura M, et al. Identification of the female-determining region of the W chromosome in Bombyx mori. Genetica. 2008;133(3):269–282. doi: 10.1007/s10709-007-9210-1 17901928
15. Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 2014;509(7502):633–636. doi: 10.1038/nature13315 24828047
16. Katsuma S, Kawamoto M, Kiuchi T. Guardian small RNAs and sex determination. RNA Biol. 2014;11(10):1238–1242. doi: 10.1080/15476286.2014.996060 25588029
17. Sakai H, Sumitani M, Chikami Y, Yahata K, Uchino K, Kiuchi T, et al. Transgenic Expression of the piRNA-Resistant Masculinizer Gene Induces Female-Specific Lethality and Partial Female-to-Male Sex Reversal in the Silkworm, Bombyx mori. PLoS Genet. 2016;12(8):e1006203. doi: 10.1371/journal.pgen.1006203 27579676
18. Li Z, You L, Yan D, James AA, Huang Y, Tan A. Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination. PLoS Genet. 2017;14(2):e1007245. doi: 10.1371/journal.pgen.1007245 29474354
19. Muerdter F, Guzzardo PM, Gillis J, Luo Y, Yu Y, Chen C, et al. A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Mol Cell. 2013;50(5):736–748. doi: 10.1016/j.molcel.2013.04.006 23665228
20. Dönertas D, Sienski G, Brennecke J. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev. 2013;27(15):1693–1705. doi: 10.1101/gad.221150.113 23913922
21. Ohtani H, Iwasaki YW, Shibuya A, Siomi H, Siomi MC, Saito K. DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes Dev. 2013;27(15):1656–1661. doi: 10.1101/gad.221515.113 23913921
22. Yoshimura T, Watanabe T, Kuramochi-Miyagawa S, Takemoto N, Shiromoto Y, Kudo A, et al. Mouse GTSF1 is an essential factor for secondary piRNA biogenesis. EMBO Rep. 2018;19(4):e42054. doi: 10.15252/embr.201642054 29437694
23. Wang SH, Elgin SC. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc Natl Acad Sci U S A. 2011;108(52):21164–211649. doi: 10.1073/pnas.1107892109 22160707
24. Tóth KF, Pezic D, Stuwe E, Webster A. The piRNA Pathway Guards the Germline Genome Against Transposable Elements. Adv Exp Med Biol. 2016;886:51–77. doi: 10.1007/978-94-017-7417-8_4 26659487
25. Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: Its Biogenesis and Functions. Annu Rev Biochem. 2015;84:405–433. doi: 10.1146/annurev-biochem-060614-034258 25747396
26. Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 2012;151(5):964–980. doi: 10.1016/j.cell.2012.10.040 23159368
27. Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20(2):89–108. doi: 10.1038/s41576-018-0073-3 30446728
28. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011;12(4):246–458. doi: 10.1038/nrm3089 21427766
29. Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, et al. piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu Rev Genet. 2018;52:131–157. doi: 10.1146/annurev-genet-120417-031441 30476449
30. Théron E, Maupetit-Mehouas S, Pouchin P, Baudet L, Brasset E, Vaury C. The interplay between the Argonaute proteins Piwi and Aub within Drosophila germarium is critical for oogenesis, piRNA biogenesis and TE silencing. Nucleic Acids Res. 2018;46(19):10052–10065. doi: 10.1093/nar/gky695 30113668
31. Nishimura T, Nagamori I, Nakatani T, Izumi N, Tomari Y, Kuramochi-Miyagawa S, et al. PNLDC1, mouse pre-piRNA Trimmer, is required for meiotic and post-meiotic male germ cell development. EMBO Rep. 2018;19(3):e44957. doi: 10.15252/embr.201744957 29444933
32. Huang X, Fejes Tóth K, Aravin AA. piRNA Biogenesis in Drosophila melanogaster. Trends Genet. 2017;33(11):882–894. doi: 10.1016/j.tig.2017.09.002 28964526
33. Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. 2009;137(3):509–521. doi: 10.1016/j.cell.2009.04.027 19395009
34. Rozhkov NV, Hammell M, Hannon GJ. Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev. 2013;27(4):400–412. doi: 10.1101/gad.209767.112 23392609
35. Zhang Z, Xu J, Koppetsch BS, Wang J, Tipping C, Ma S, et al. Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. Mol Cell. 2011;44(4):572–584. doi: 10.1016/j.molcel.2011.10.011 22099305
36. Matsumoto N, Nishimasu H, Sakakibara K, Nishida KM, Hirano T, Ishitani R, et al. Crystal Structure of Silkworm PIWI-Clade Argonaute Siwi Bound to piRNA. Cell. 2016;167(2):484–497. doi: 10.1016/j.cell.2016.09.002 27693359
37. Zhang Y, Guo R, Cui Y, Zhu Z, Zhang Y, Wu H, et al. An essential role for PNLDC1 in piRNA 3′ end trimming and male fertility in mice. Cell research. 2017;27(11):1392–1396. doi: 10.1038/cr.2017.125 28994417
38. Czech B, Hannon GJ. One Loop to Rule Them All: The Ping-Pong Cycle and piRNA-Guided Silencing. Trends Biochem Sci. 2016;41(4):324–337. doi: 10.1016/j.tibs.2015.12.008 26810602
39. Webster A, Li S, Hur JK, Wachsmuth M, Bois JS, Perkins EM, et al. Aub and Ago3 Are Recruited to Nuage through Two Mechanisms to Form a Ping-Pong Complex Assembled by Krimper. Mol Cell. 2015;59(4):564–575. doi: 10.1016/j.molcel.2015.07.017 26295961
40. Nishida KM, Iwasaki YW, Murota Y, Nagao A, Mannen T, Kato Y, et al. Respective functions of two distinct Siwi complexes assembled during PIWI-interacting RNA biogenesis in Bombyx germ cells. Cell Rep. 2015;10(2):193–203. doi: 10.1016/j.celrep.2014.12.013 25558067
41. Nishida KM, Sakakibara K, Iwasaki YW, Yamada H, Murakami R, Murota Y, et al. Hierarchical roles of mitochondrial Papi and Zucchini in Bombyx germline piRNA biogenesis. Nature. 2018;555(7695):260–264. doi: 10.1038/nature25788 29489748
42. Ge DT, Wang W, Tipping C, Gainetdinov I, Weng Z, Zamore PD. The RNA-Binding ATPase, Armitage, Couples piRNA Amplification in Nuage to Phased piRNA Production on Mitochondria. Mol Cell. 2019;74(5)982–995.e6. doi: 10.1016/j.molcel.2019.04.006 31076285
43. Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol. 2007;17(14):1265–1272. doi: 10.1016/j.cub.2007.06.030 17604629
44. Chen K, Chen S, Xu J, Yu Y, Liu Z, Tan A, et al. Maelstrom regulates spermatogenesis of the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2019;109:43–51. doi: 10.1016/j.ibmb.2019.03.012 30970276
45. Xu J, Chen S, Zeng B, James AA, Tan A, Huang Y. Bombyx mori P-element Somatic Inhibitor (BmPSI) Is a Key Auxiliary Factor for Silkworm Male Sex Determination. PLoS Genet. 2017;13(1):e1006576. doi: 10.1371/journal.pgen.1006576 28103247
46. Hiroki S, Hiroyuki O, Kodai Y, Hiroki G, Takaaki D, Toshinobu Y, et al. Dimorphic Sperm Formation by Sex-lethal. Proc Natl Acad Sci U S A. 2019;116(21):10412–10417. doi: 10.1073/pnas.1820101116 31036645
47. Suzuki MG, Imanishi S, Dohmae N, Asanuma M, Matsumoto S. Identification of a male-specific RNA binding protein that regulates sex-specific splicing of Bmdsx by increasing RNA binding activity of BmPSI. Mol Cell Biol. 2010;30:5776–5786. doi: 10.1128/MCB.00444-10 20956562
48. Hara K, Fujii T, Suzuki Y, Sugano S, Shimada T, Katsuma S, et al. Altered expression of testis-specific genes, piRNAs, and transposons in the silkworm ovary masculinized by a W chromosome mutation. BMC Genomics. 2012;13:119. doi: 10.1186/1471-2164-13-119 22452797
49. Kawaoka S, Arai Y, Kadota K, Suzuki Y, Hara K, Sugano S, et al. Zygotic amplification of secondary piRNAs during silkworm embryogenesis. RNA. 2011;17(7):1401–1407. doi: 10.1261/rna.2709411 21628432
50. Almeida MV, Dietz S, Redl S, Karaulanov E, Hildebrandt A, Renz C, et al. GTSF-1 is required for formation of a functional RNA-dependent RNA Polymerase complex in Caenorhabditis elegans. EMBO J. 2018;37(12):e99325. doi: 10.15252/embj.201899325 29769402
51. Sakakibara K, Siomi MC. The PIWI-Interacting RNA Molecular Pathway: Insights From Cultured Silkworm Germline Cells. Bioessays. 2018;40(1). doi: 10.1002/bies.201700068 29164638
52. Ding D, Liu J, Dong K, Midic U, Hess RA, Xie H, et al. PNLDC1 is essential for piRNA 3' end trimming and transposon silencing during spermatogenesis in mice. Nat Commun. 2017;8(1):819. doi: 10.1038/s41467-017-00854-4 29018194
53. Aravin AA and Hannon GJ. Small RNA silencing pathways in germ and stem cells. Cold Spring Harb Symp Quant Biol. 2008;73:283–290. doi: 10.1101/sqb.2008.73.058 19270082
54. Khurana JS and Theurkauf W. piRNAs, transposon silencing, and Drosophila germline development. J Cell Biol. 2010;191(5):905–913. doi: 10.1083/jcb.201006034 21115802
55. Tan A, Fu G, Jin L, Guo Q, Li Z, Niu B, et al. Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori. Proc Natl Acad Sci U S A. 2013;110(17):6766–6770. doi: 10.1073/pnas.1221700110 23569267
56. Yu Y, Liu XJ, Ma X, Zhang ZJ, Wang TC, Sun F, et al. A palmitoyltransferase Approximated gene Bm-app regulates wing development in Bombyx mori. Insect Sci. 2020;27(1):2–13. doi: 10.1111/1744-7917.12629 29943911
57. Ling L, Ge X, Li Z, Zeng B, Xu J, Chen X, et al. MiR-2 family targets awd and fng to regulate wing morphogenesis in Bombyx mori. RNA Biol, 2015;12(7):742–748. doi: 10.1080/15476286.2015.1048957 26037405
58. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179. doi: 10.1093/nar/gni178 16314309
59. Osanai-Futahashi M, Suetsugu Y, Mita K, Fujiwara H. Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2008;38(12):1046–1057. doi: 10.1016/j.ibmb.2008.05.012 19280695
60. Izumi N, Shoji K, Sakaguchi Y, Honda S, Kirino Y, Suzuki T, et al. Identification and Functional Analysis of the Pre-piRNA 3' Trimmer in Silkworms. Cell. 2016;164(5):962–973. doi: 10.1016/j.cell.2016.01.008 26919431
61. Kawaoka S, Kadota K, Arai Y, Suzuki Y, Fujii T, Abe H, et al. The silkworm W chromosome is a source of female-enriched piRNAs. RNA. 2011;17(12):2144–2151. doi: 10.1261/rna.027565.111 22020973
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 11
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Raději si zajděte na oční! Jak souvisí citlivost zraku s rozvojem demence?
- Co způsobuje pooperační infekce? Na vině může být i naše vlastní mikrobiota
- Čeká nás průlom v diagnostice karcinomu pankreatu?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
Nejčtenější v tomto čísle
- Stability of SARS-CoV-2 phylogenies
- Formal commentary
- No association between SCN9A and monogenic human epilepsy disorders
- Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis