The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε
Autoři:
Alicja Winczura aff001; Rowin Appanah aff001; Michael H. Tatham aff002; Ronald T. Hay aff002; Giacomo De Piccoli aff001
Působiště autorů:
Warwick Medical School, University of Warwick, Coventry, United Kingdom
aff001; Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, United Kingdom
aff002
Vyšlo v časopise:
The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε. PLoS Genet 15(11): e32767. doi:10.1371/journal.pgen.1008427
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008427
Souhrn
Replication fork stalling and accumulation of single-stranded DNA trigger the S phase checkpoint, a signalling cascade that, in budding yeast, leads to the activation of the Rad53 kinase. Rad53 is essential in maintaining cell viability, but its targets of regulation are still partially unknown. Here we show that Rad53 drives the hyper-SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε, principally following replication forks stalling induced by nucleotide depletion. Pol2 is the main target of SUMOylation within the replisome and its modification requires the SUMO-ligase Mms21, a subunit of the Smc5/6 complex. Moreover, the Smc5/6 complex co-purifies with Pol ε, independently of other replisome components. Finally, we map Pol2 SUMOylation to a single site within the N-terminal catalytic domain and identify a SUMO-interacting motif at the C-terminus of Pol2. These data suggest that the S phase checkpoint regulate Pol ε during replication stress through Pol2 SUMOylation and SUMO-binding ability
Klíčová slova:
DNA damage – DNA replication – Immune system proteins – Immunoblotting – Immunoprecipitation – SUMOylation – Synthesis phase – G1 phase
Zdroje
1. Kotsantis P, Petermann E, Boulton SJ. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov. 2018;8(5):537–55. doi: 10.1158/2159-8290.CD-17-1461 29653955
2. Gaillard H, García-Muse T, Aguilera A. Replication stress and cancer. Nat Rev Cancer. 2015;15(5):276–89. doi: 10.1038/nrc3916 25907220
3. Heller R, C., Kang S, Lam W, M., Chen S, Chan C, S., Bell S, P. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell. 2011;146(1):80–91. doi: 10.1016/j.cell.2011.06.012 21729781
4. Sheu YJ, Stillman B. Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell. 2006;24(1):101–13. doi: 10.1016/j.molcel.2006.07.033 17018296
5. Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol. 2011;21(24):2055–63. doi: 10.1016/j.cub.2011.11.038 22169533
6. Wei L, Zhao X. A new MCM modification cycle regulates DNA replication initiation. Nat Struct Mol Biol. 2016;23(3):209–16. doi: 10.1038/nsmb.3173 26854664
7. Hiraga S, Alvino GM, Chang F, Lian HY, Sridhar A, Kubota T, et al. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 2014;28(4):372–83. doi: 10.1101/gad.231258.113 24532715
8. Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, Shi T, et al. Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep. 2014;7(1):62–9. doi: 10.1016/j.celrep.2014.03.010 24685139
9. Bell SP, Labib K. Chromosome Duplication in Saccharomyces cerevisiae. Genetics. 2016;203(3):1027–67. doi: 10.1534/genetics.115.186452 27384026
10. Bando M, Katou Y, Komata M, Tanaka H, Itoh T, Sutani T, et al. Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates with DNA replication forks. The Journal of Biological Chemistry. 2009;284(49):34355–65 doi: 10.1074/jbc.M109.065730 19819872
11. Simon A, C, Zhou J, C, Perera R, L, van Deursen F, Evrin C, Ivanova M, E., et al. A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome. Nature. 2014;510(7504):293–7. doi: 10.1038/nature13234 24805245
12. Villa F, Simon A, C., Bazan M, A,O., Kilkenny M, L., Wirthensohn D, Wightman M, et al. Ctf4 is a hub in the eukaryotic replisome that links multiple CIP-box proteins to the CMG helicase. Molecular Cell. 2016;63(3):385–96. doi: 10.1016/j.molcel.2016.06.009 27397685
13. Sekedat M D., Fenyö D, Rogers R, S., Tackett A, J., Aitchison J, D., Chait B, T. GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Molecular Systems Biology. 2010;6:353. doi: 10.1038/msb.2010.8 20212525
14. Yeeles J, T, Janska A, Early A, Diffley J, F. How the eukaryotic replisome achieves rapid and efficient DNA replication. Molecular Cell. 2017;65(1):105–16. doi: 10.1016/j.molcel.2016.11.017 27989442
15. Zeman M, K, Cimprich K, A Causes and consequences of replication stress. Nature Cell Biology. 2014;16(1):2–9. doi: 10.1038/ncb2897 24366029
16. Lopes M, Foiani M, Sogo JM. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell. 2006;21(1):15–27. doi: 10.1016/j.molcel.2005.11.015 16387650
17. Sogo JM, Lopes M, Foiani M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science. 2002;297(5581):599–602. doi: 10.1126/science.1074023 12142537
18. Pardo B, Crabbé L, Pasero P. Signaling pathways of replication stress in yeast. FEMS Yeast Res. 2017;17(2).
19. Giannattasio M, Branzei D. S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cell Mol Life Sci. 2017;74(13):2361–80. doi: 10.1007/s00018-017-2474-4 28220209
20. Labib K, De Piccoli G. Surviving chromosome replication: the many roles of the S-phase checkpoint pathway. Philos Trans R Soc Lond B Biol Sci. 2011;366(1584):3554–61. doi: 10.1098/rstb.2011.0071 22084382
21. De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, Labib K. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol Cell. 2012;45(5):696–704. doi: 10.1016/j.molcel.2012.01.007 22325992
22. Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics. 2008;7(7):1389–96. doi: 10.1074/mcp.M700468-MCP200 18407956
23. Chen SH, Albuquerque CP, Liang J, Suhandynata RT, Zhou H. A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem. 2010;285(17):12803–12. doi: 10.1074/jbc.M110.106989 20190278
24. Smolka MB, Albuquerque CP, Chen SH, Zhou H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci U S A. 2007;104(25):10364–9. doi: 10.1073/pnas.0701622104 17563356
25. Zhou C, Elia AE, Naylor ML, Dephoure N, Ballif BA, Goel G, et al. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks. Proc Natl Acad Sci U S A. 2016;113(26):E3667–75. doi: 10.1073/pnas.1602827113 27298372
26. Can G, Kauerhof AC, Macak D, Zegerman P. Helicase Subunit Cdc45 Targets the Checkpoint Kinase Rad53 to Both Replication Initiation and Elongation Complexes after Fork Stalling. Mol Cell. 2019;73(3):562–73.e3. doi: 10.1016/j.molcel.2018.11.025 30595439
27. Szyjka SJ, Aparicio JG, Viggiani CJ, Knott S, Xu W, Tavaré S, et al. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae. Genes Dev. 2008;22(14):1906–20. doi: 10.1101/gad.1660408 18628397
28. Gan H, Yu C, Devbhandari S, Sharma S, Han J, Chabes A, et al. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress. Mol Cell. 2017;68(2):446–55.e3. doi: 10.1016/j.molcel.2017.09.018 29033319
29. Bacal J, Moriel-Carretero M, Pardo B, Barthe A, Sharma S, Chabes A, et al. Mrc1 and Rad9 cooperate to regulate initiation and elongation of DNA replication in response to DNA damage. EMBO J. 2018;37(21).
30. Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell. 2007;129(4):665–79. doi: 10.1016/j.cell.2007.05.003 17512402
31. Zhao X. SUMO-Mediated Regulation of Nuclear Functions and Signaling Processes. Mol Cell. 2018;71(3):409–18. doi: 10.1016/j.molcel.2018.07.027 30075142
32. Branzei D, Sollier J, Liberi G, Zhao X, Maeda D, Seki M, et al. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell. 2006;127(3):509–22. doi: 10.1016/j.cell.2006.08.050 17081974
33. Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell. 2012;45(3):422–32. doi: 10.1016/j.molcel.2011.11.028 22285753
34. Zhao X, Blobel G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci U S A. 2005;102(13):4777–82. doi: 10.1073/pnas.0500537102 15738391
35. Bermúdez-López M, Villoria MT, Esteras M, Jarmuz A, Torres-Rosell J, Clemente-Blanco A, et al. Sgs1's roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev. 2016;30(11):1339–56. doi: 10.1101/gad.278275.116 27298337
36. Bonner JN, Choi K, Xue X, Torres NP, Szakal B, Wei L, et al. Smc5/6 Mediated Sumoylation of the Sgs1-Top3-Rmi1 Complex Promotes Removal of Recombination Intermediates. Cell Rep. 2016;16(2):368–78. doi: 10.1016/j.celrep.2016.06.015 27373152
37. Sacher M, Pfander B, Hoege C, Jentsch S. Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat Cell Biol. 2006;8(11):1284–90. doi: 10.1038/ncb1488 17013376
38. Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N, Reid R, et al. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol. 2007;9(8):923–31. doi: 10.1038/ncb1619 17643116
39. McAleenan A, Cordon-Preciado V, Clemente-Blanco A, Liu IC, Sen N, Leonard J, et al. SUMOylation of the α-kleisin subunit of cohesin is required for DNA damage-induced cohesion. Curr Biol. 2012;22(17):1564–75. doi: 10.1016/j.cub.2012.06.045 22771042
40. Wu N, Kong X, Ji Z, Zeng W, Potts PR, Yokomori K, et al. Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. Genes Dev. 2012;26(13):1473–85. doi: 10.1101/gad.193615.112 22751501
41. Bergink S, Ammon T, Kern M, Schermelleh L, Leonhardt H, Jentsch S. Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction. Nat Cell Biol. 2013;15(5):526–32. doi: 10.1038/ncb2729 23624404
42. Horigome C, Bustard DE, Marcomini I, Delgoshaie N, Tsai-Pflugfelder M, Cobb JA, et al. PolySUMOylation by Siz2 and Mms21 triggers relocation of DNA breaks to nuclear pores through the Slx5/Slx8 STUbL. Genes Dev. 2016;30(8):931–45. doi: 10.1101/gad.277665.116 27056668
43. Ryu T, Spatola B, Delabaere L, Bowlin K, Hopp H, Kunitake R, et al. Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat Cell Biol. 2015;17(11):1401–11. doi: 10.1038/ncb3258 26502056
44. Psakhye I, Jentsch S. Protein Group Modification and Synergy in the SUMO Pathway as Exemplified in DNA Repair. Cell. 2012;151(4):807–20. doi: 10.1016/j.cell.2012.10.021 23122649
45. Wu CS, Ouyang J, Mori E, Nguyen HD, Maréchal A, Hallet A, et al. SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. Genes Dev. 2014;28(13):1472–84. doi: 10.1101/gad.238535.114 24990965
46. Wu CS, Zou L. The SUMO (Small Ubiquitin-like Modifier) Ligase PIAS3 Primes ATR for Checkpoint Activation. J Biol Chem. 2016;291(1):279–90. doi: 10.1074/jbc.M115.691170 26565033
47. Carlborg KK, Kanno T, Carter SD, Sjögren C. Mec1-dependent phosphorylation of Mms21 modulates its SUMO ligase activity. DNA Repair (Amst). 2015;28:83–92.
48. Simpson-Lavy KJ, Bronstein A, Kupiec M, Johnston M. Cross-Talk between Carbon Metabolism and the DNA Damage Response in S. cerevisiae. Cell Rep. 2015;12(11):1865–75. doi: 10.1016/j.celrep.2015.08.025 26344768
49. Gibbs-Seymour I, Oka Y, Rajendra E, Weinert BT, Passmore LA, Patel KJ, et al. Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage. Mol Cell. 2015;57(1):150–64. doi: 10.1016/j.molcel.2014.12.001 25557546
50. Munk S, Sigurðsson JO, Xiao Z, Batth TS, Franciosa G, von Stechow L, et al. Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress. Cell Rep. 2017;21(2):546–58. doi: 10.1016/j.celrep.2017.09.059 29020638
51. Huang M, Elledge SJ. Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol. 1997;17(10):6105–13. doi: 10.1128/mcb.17.10.6105 9315670
52. Zhou Z, Elledge SJ. DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell. 1993;75(6):1119–27. doi: 10.1016/0092-8674(93)90321-g 8261511
53. Alcasabas A A., Osborn A J., Bachant J, Hu F, Werler P, J., Bousset K, et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nature Cell Biology. 2001;3(11):958–65 doi: 10.1038/ncb1101-958 11715016
54. Crabbé L, Thomas A, Pantesco V, De Vos J, Pasero P, Lengronne A. Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat Struct Mol Biol. 2010;17(11):1391–7. doi: 10.1038/nsmb.1932 20972444
55. Kubota T, Hiraga S, Yamada K, Lamond AI, Donaldson AD. Quantitative proteomic analysis of chromatin reveals that Ctf18 acts in the DNA replication checkpoint. Mol Cell Proteomics. 2011;10(7):M110.005561. doi: 10.1074/mcp.M110.005561 21505101
56. Ohouo PY, Bastos de Oliveira FM, Liu Y, Ma CJ, Smolka MB. DNA-repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9. Nature. 2013;493(7430):120–4. doi: 10.1038/nature11658 23160493
57. Weinert TA, Hartwell LH. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics. 1993;134(1):63–80. 8514150
58. Grenon M, Gilbert C, Lowndes NF. Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat Cell Biol. 2001;3(9):844–7. doi: 10.1038/ncb0901-844 11533665
59. Usui T, Ogawa H, Petrini JH. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell. 2001;7(6):1255–66. doi: 10.1016/s1097-2765(01)00270-2 11430828
60. Zegerman P, Diffley J, F. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature. 2010;467(7314):474–8. doi: 10.1038/nature09373 20835227
61. Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 2010;11(12):861–71. doi: 10.1038/nrm3011 21102611
62. Potts PR, Yu H. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol. 2005;25(16):7021–32. doi: 10.1128/MCB.25.16.7021-7032.2005 16055714
63. Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ. Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol. 2005;25(1):185–96. doi: 10.1128/MCB.25.1.185-196.2005 15601841
64. De Piccoli G, Cortes-Ledesma F, Ira G, Torres-Rosell J, Uhle S, Farmer S, et al. Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat Cell Biol. 2006;8(9):1032–4. doi: 10.1038/ncb1466 16892052
65. Lindroos HB, Ström L, Itoh T, Katou Y, Shirahige K, Sjögren C. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol Cell. 2006;22(6):755–67. doi: 10.1016/j.molcel.2006.05.014 16793545
66. Menolfi D, Delamarre A, Lengronne A, Pasero P, Branzei D. Essential Roles of the Smc5/6 Complex in Replication through Natural Pausing Sites and Endogenous DNA Damage Tolerance. Mol Cell. 2015;60(6):835–46. doi: 10.1016/j.molcel.2015.10.023 26698660
67. Torres-Rosell J, Machín F, Farmer S, Jarmuz A, Eydmann T, Dalgaard JZ, et al. SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat Cell Biol. 2005;7(4):412–9. doi: 10.1038/ncb1239 15793567
68. Jeppsson K, Carlborg KK, Nakato R, Berta DG, Lilienthal I, Kanno T, et al. The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement. PLoS Genet. 2014;10(10):e1004680. doi: 10.1371/journal.pgen.1004680 25329383
69. Kegel A, Betts-Lindroos H, Kanno T, Jeppsson K, Strom L, Katou Y, et al. Chromosome length influences replication-induced topological stress. Nature. 2011;471(7338):392–6. doi: 10.1038/nature09791 21368764
70. Potts PR, Porteus MH, Yu H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 2006;25(14):3377–88. doi: 10.1038/sj.emboj.7601218 16810316
71. Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods. 2009;6(12):917–22. doi: 10.1038/nmeth.1401 19915560
72. Hang LE, Peng J, Tan W, Szakal B, Menolfi D, Sheng Z, et al. Rtt107 Is a Multi-functional Scaffold Supporting Replication Progression with Partner SUMO and Ubiquitin Ligases. Mol Cell. 2015;60(2):268–79. doi: 10.1016/j.molcel.2015.08.023 26439300
73. Albuquerque CP, Wang G, Lee NS, Kolodner RD, Putnam CD, Zhou H. Distinct SUMO ligases cooperate with Esc2 and Slx5 to suppress duplication-mediated genome rearrangements. PLoS Genet. 2013;9(8):e1003670. doi: 10.1371/journal.pgen.1003670 23935535
74. Prudden J, Perry JJ, Nie M, Vashisht AA, Arvai AS, Hitomi C, et al. DNA repair and global sumoylation are regulated by distinct Ubc9 noncovalent complexes. Mol Cell Biol. 2011;31(11):2299–310. doi: 10.1128/MCB.05188-11 21444718
75. Sollier J, Driscoll R, Castellucci F, Foiani M, Jackson SP, Branzei D. The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Mol Biol Cell. 2009;20(6):1671–82. doi: 10.1091/mbc.E08-08-0875 19158389
76. García-Rodríguez L J., De Piccoli G, Marchesi V, Jones R, C., Edmondson R, D., Labib K. A conserved Polϵ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1. Nucleic Acids Research. 2015;14(8):8830–8.
77. Grabarczyk DB, Silkenat S, Kisker C. Structural Basis for the Recruitment of Ctf18-RFC to the Replisome. Structure. 2018;26(1):137–44.e3. doi: 10.1016/j.str.2017.11.004 29225079
78. Okimoto H, Tanaka S, Araki H, Ohashi E, Tsurimoto T. Conserved interaction of Ctf18-RFC with DNA polymerase ε is critical for maintenance of genome stability in Saccharomyces cerevisiae. Genes Cells. 2016;21(5):482–91. doi: 10.1111/gtc.12356 26987677
79. Hogg M, Johansson E. DNA polymerase ε. Subcell Biochem. 2012;62:237–57. doi: 10.1007/978-94-007-4572-8_13 22918589
80. Hendriks IA, Vertegaal AC. A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol. 2016;17(9):581–95. doi: 10.1038/nrm.2016.81 27435506
81. Hogg M, Osterman P, Bylund G, O., Ganai R, A., Lundström E, B., Sauer-Eriksson A, E., et al. Structural basis for processive DNA synthesis by yeast DNA polymerase ɛ. Nature Structural and Molecular Biology. 2014;21(1):49–55. doi: 10.1038/nsmb.2712 24292646
82. Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007;8(12):947–56. doi: 10.1038/nrm2293 18000527
83. Zilio N, Eifler-Olivi K, Ulrich HD. Functions of SUMO in the Maintenance of Genome Stability. Adv Exp Med Biol. 2017;963:51–87. doi: 10.1007/978-3-319-50044-7_4 28197906
84. Armstrong AA, Mohideen F, Lima CD. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature. 2012;483(7387):59–63. doi: 10.1038/nature10883 22382979
85. Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature. 2005;436(7049):428–33. doi: 10.1038/nature03665 15931174
86. Kerscher O. SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 2007;8(6):550–5. doi: 10.1038/sj.embor.7400980 17545995
87. Netz D, J, Stith C, M, Stümpfig M, Köpf G, Vogel D, Genau H, M., et al. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes Nature Chemical Biology. 2011;8(1):125–32. doi: 10.1038/nchembio.721 22119860
88. Ter Beek J, Parkash V, Bylund GO, Osterman P, Sauer-Eriksson AE, Johansson E. Structural evidence for an essential Fe-S cluster in the catalytic core domain of DNA polymerase ϵ. Nucleic Acids Res. 2019;47(11):5712–22. doi: 10.1093/nar/gkz248 30968138
89. Beauclair G, Bridier-Nahmias A, Zagury JF, Saïb A, Zamborlini A. JASSA: a comprehensive tool for prediction of SUMOylation sites and SIMs. Bioinformatics. 2015;31(21):3483–91. doi: 10.1093/bioinformatics/btv403 26142185
90. Dua R, Levy DL, Campbell JL. Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase epsilon in DNA replication and the S/M checkpoint pathway. J Biol Chem. 1998;273(45):30046–55. doi: 10.1074/jbc.273.45.30046 9792727
91. Denison C, Rudner AD, Gerber SA, Bakalarski CE, Moazed D, Gygi SP. A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics. 2005;4(3):246–54. doi: 10.1074/mcp.M400154-MCP200 15542864
92. Esteras M, Liu IC, Snijders AP, Jarmuz A, Aragon L. Identification of SUMO conjugation sites in the budding yeast proteome. Microb Cell. 2017;4(10):331–41. doi: 10.15698/mic2017.10.593 29082231
93. Makhnevych T, Sydorskyy Y, Xin X, Srikumar T, Vizeacoumar FJ, Jeram SM, et al. Global map of SUMO function revealed by protein-protein interaction and genetic networks. Mol Cell. 2009;33(1):124–35. doi: 10.1016/j.molcel.2008.12.025 19150434
94. Wohlschlegel JA, Johnson ES, Reed SI, Yates JR. Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem. 2004;279(44):45662–8. doi: 10.1074/jbc.M409203200 15326169
95. Wykoff DD, O'Shea EK. Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome. Mol Cell Proteomics. 2005;4(1):73–83. doi: 10.1074/mcp.M400166-MCP200 15596868
96. Cobb JA, Bjergbaek L, Shimada K, Frei C, Gasser SM. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J. 2003;22(16):4325–36. doi: 10.1093/emboj/cdg391 12912929
97. Tittel-Elmer M, Lengronne A, Davidson MB, Bacal J, François P, Hohl M, et al. Cohesin association to replication sites depends on rad50 and promotes fork restart. Mol Cell. 2012;48(1):98–108. doi: 10.1016/j.molcel.2012.07.004 22885006
98. Alabert C, Bianco JN, Pasero P. Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint. EMBO J. 2009;28(8):1131–41. doi: 10.1038/emboj.2009.75 19322196
99. Psakhye I, Jentsch S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell. 2012;151(4):807–20. doi: 10.1016/j.cell.2012.10.021 23122649
100. Varejão N, Ibars E, Lascorz J, Colomina N, Torres-Rosell J, Reverter D. DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. EMBO J. 2018;37(12).
101. Swaney D, L, Beltrao P, Starita L, Guo A, Rush J, Fields S, et al. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods. 2013;10(7):676–82. doi: 10.1038/nmeth.2519 23749301
102. Bustard DE, Menolfi D, Jeppsson K, Ball LG, Dewey SC, Shirahige K, et al. During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks. J Biol Chem. 2012;287(14):11374–83. doi: 10.1074/jbc.M111.336263 22303010
103. Karras GI, Jentsch S. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell. 2010;141(2):255–67. doi: 10.1016/j.cell.2010.02.028 20403322
104. Randell JC, Fan A, Chan C, Francis LI, Heller RC, Galani K, et al. Mec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7. Mol Cell. 2010;40(3):353–63. doi: 10.1016/j.molcel.2010.10.017 21070963
105. Araki H, Hamatake RK, Johnston LH, Sugino A. DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991;88(11):4601–5. doi: 10.1073/pnas.88.11.4601 2052544
106. Zhou JC, Janska A, Goswami P, Renault L, Abid Ali F, Kotecha A, et al. CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. Proc Natl Acad Sci U S A. 2017;114(16):4141–6. doi: 10.1073/pnas.1700530114 28373564
107. Kitamura E, Blow JJ, Tanaka TU. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell. 2006;125(7):1297–308. doi: 10.1016/j.cell.2006.04.041 16814716
108. Fottner M, Brunner AD, Bittl V, Horn-Ghetko D, Jussupow A, Kaila VRI, et al. Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase. Nat Chem Biol. 2019;15(3):276–84. doi: 10.1038/s41589-019-0227-4 30770915
109. Jacome A, Gutierrez-Martinez P, Schiavoni F, Tenaglia E, Martinez P, Rodríguez-Acebes S, et al. NSMCE2 suppresses cancer and aging in mice independently of its SUMO ligase activity. EMBO J. 2015;34(21):2604–19. doi: 10.15252/embj.201591829 26443207
110. Janke C, Magiera M, M., Rathfelder N, Taxis C, Reber S, Maekawa H, et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 2004;21(11):947–62. doi: 10.1002/yea.1142 15334558
111. Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast. 1999;15(10B):963–72. doi: 10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W 10407276
112. Maric M, Maculins T, De Piccoli G, Labib K. Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science. 2014;346(6208):1253596. doi: 10.1126/science.1253596 25342810
113. Foiani M, Marini F, Gamba D, Lucchini G, Plevani P. The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication. Mol Cell Biol. 1994;14(2):923–33. doi: 10.1128/mcb.14.2.923 8289832
114. Gambus A, Jones R, C., Sanchez-Diaz A, Kanemalo M, van Duersen F, Edmondson R, D., et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nature Cell Biology. 2006;8(4):358–66. doi: 10.1038/ncb1382 16531994
115. Gambus A, van Duersen F, Polychronopoulos D, Foltman M, Jones R, C., Edmondson R, D., et al. A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase α within the eukaryotic replisome. The EMBO Journal. 2009;28(19):2992–3004. doi: 10.1038/emboj.2009.226 19661920
116. Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell. 2005;19(1):123–33. doi: 10.1016/j.molcel.2005.06.001 15989970
117. Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 1997;16(18):5509–19. doi: 10.1093/emboj/16.18.5509 9312010
118. Johnson ES, Blobel G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem. 1997;272(43):26799–802. doi: 10.1074/jbc.272.43.26799 9341106
119. Labib K, Diffley JF, Kearsey SE. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nat Cell Biol. 1999;1(7):415–22. doi: 10.1038/15649 10559985
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 11
- Management pacientů s MPN a neobvyklou kombinací genových přestaveb – systematický přehled a kazuistiky
- Management péče o pacientku s karcinomem ovaria a neočekávanou mutací CDH1 – kazuistika
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Vliv kvality morfologie spermií na úspěšnost intrauterinní inseminace
- Akutní intermitentní porfyrie
Nejčtenější v tomto čísle
- The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)
- A circadian output center controlling feeding:Fasting rhythms in Drosophila
- AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation
- Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis