#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SUR-8 interacts with PP1-87B to stabilize PERIOD and regulate circadian rhythms in Drosophila


Autoři: Yongbo Xue aff001;  Joanna C. Chiu aff002;  Yong Zhang aff001
Působiště autorů: Department of Biology, University of Nevada, Reno, NV, United States of America aff001;  Department of Entomology and Nematology, University of California, Davis, CA, United States of America aff002
Vyšlo v časopise: SUR-8 interacts with PP1-87B to stabilize PERIOD and regulate circadian rhythms in Drosophila. PLoS Genet 15(11): e32767. doi:10.1371/journal.pgen.1008475
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008475

Souhrn

Circadian rhythms are generated by endogenous pacemakers that rely on transcriptional-translational feedback mechanisms conserved among species. In Drosophila, the stability of a key pacemaker protein PERIOD (PER) is tightly controlled by changes in phosphorylation status. A number of molecular players have been implicated in PER destabilization by promoting PER progressive phosphorylation. On the other hand, there have been few reports describing mechanisms that stabilize PER by delaying PER hyperphosphorylation. Here we report that the protein Suppressor of Ras (SUR-8) regulates circadian locomotor rhythms by stabilizing PER. Depletion of SUR-8 from circadian neurons lengthened the circadian period by about 2 hours and decreased PER abundance, whereas its overexpression led to arrhythmia and an increase in PER. Specifically SUR-8 promotes the stability of PER through phosphorylation regulation. Interestingly, downregulation of the protein phosphatase 1 catalytic subunit PP1-87B recapitulated the phenotypes of SUR-8 depletion. We found that SUR-8 facilitates interactions between PP1-87B and PER. Depletion of SUR-8 decreased the interaction of PER and PP1-87B, which supports the role of SUR-8 as a scaffold protein. Interestingly, the interaction between SUR-8 and PER is temporally regulated: SUR-8 has more binding to PER at night than morning. Thus, our results indicate that SUR-8 interacts with PP1-87B to control PER stability to regulate circadian rhythms.

Klíčová slova:

Circadian oscillators – Circadian rhythms – Cytoplasm – Chronobiology – Neurons – Phosphatases – Phosphorylation – RNA interference


Zdroje

1. Ben-Shlomo R, Kyriacou CP. Circadian rhythm entrainment in flies and mammals. Cell Biochem Biophys. 2002;37: 141–156. doi: 10.1385/CBB:37:2:141 12482136

2. Glaser FT, Stanewsky R. Synchronization of the Drosophila Circadian Clock by Temperature Cycles. Cold Spring Harb Symp Quant Biol. 2007;72: 233–242. doi: 10.1101/sqb.2007.72.046 18419280

3. Yoshii T, Hermann-Luibl C, Helfrich-Förster C. Circadian light-input pathways in Drosophila. Commun Integr Biol. 2016;9: e1102805. doi: 10.1080/19420889.2015.1102805 27066180

4. Hardin PE. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet. NIH Public Access; 2011;74: 141–73. doi: 10.1016/B978-0-12-387690-4.00005-2 21924977

5. Robinson I, Reddy AB. Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett. John Wiley & Sons, Ltd; 2014;588: 2477–2483. doi: 10.1016/j.febslet.2014.06.005 24911207

6. Hurley J, Loros JJ, Dunlap JC. Dissecting the mechanisms of the clock in Neurospora. Methods Enzymol. NIH Public Access; 2015;551: 29–52. doi: 10.1016/bs.mie.2014.10.009 25662450

7. Wilsbacher LD, Takahashi JS. Circadian rhythms: molecular basis of the clock. Curr Opin Genet Dev. Elsevier Current Trends; 1998;8: 595–602. doi: 10.1016/s0959-437x(98)80017-8 9794822

8. Dubowy C, Sehgal A. Circadian Rhythms and Sleep in Drosophila melanogaster. Genetics. 2017;205: 1373–1397. doi: 10.1534/genetics.115.185157 28360128

9. Tataroglu O, Emery P. Studying circadian rhythms in Drosophila melanogaster. Methods. NIH Public Access; 2014;68: 140–50. doi: 10.1016/j.ymeth.2014.01.001 24412370

10. Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC. CYCLE Is a Second bHLH-PAS Clock Protein Essential for Circadian Rhythmicity and Transcription of Drosophila period and timeless. Cell. Cell Press; 1998;93: 805–814. doi: 10.1016/s0092-8674(00)81441-5 9630224

11. Allada R, White NE, So WV, Hall JC, Rosbash M. A Mutant Drosophila Homolog of Mammalian Clock Disrupts Circadian Rhythms and Transcription of period and timeless. Cell. Cell Press; 1998;93: 791–804. doi: 10.1016/s0092-8674(00)81440-3 9630223

12. Curtin KD, Huang ZJ, Rosbash M. Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron. 1995;14: 365–72. Available: http://www.ncbi.nlm.nih.gov/pubmed/7857645 doi: 10.1016/0896-6273(95)90292-9 7857645

13. Saez L, Young MW. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron. 1996;17: 911–20. Available: http://www.ncbi.nlm.nih.gov/pubmed/8938123 doi: 10.1016/s0896-6273(00)80222-6 8938123

14. Shafer OT, Rosbash M, Truman JW. Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J Neurosci. 2002;22: 5946–54. doi: 10.1523/JNEUROSCI.22-14-05946.2002 12122057

15. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TD, et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science. American Association for the Advancement of Science; 1998;280: 1599–603. doi: 10.1126/science.280.5369.1599 9616122

16. Lee C, Bae K, Edery I. The Drosophila CLOCK Protein Undergoes Daily Rhythms in Abundance, Phosphorylation, and Interactions with the PER–TIM Complex. Neuron. Cell Press; 1998;21: 857–867. doi: 10.1016/s0896-6273(00)80601-7 9808471

17. Zeng H, Qian Z, Myers MP, Rosbash M. A light-entrainment mechanism for the Drosophila circadian clock. Nature. Nature Publishing Group; 1996;380: 129–135. doi: 10.1038/380129a0 8600384

18. Myers MP, Wager-Smith K, Rothenfluh-Hilfiker A, Young MW. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science. American Association for the Advancement of Science; 1996;271: 1736–40. doi: 10.1126/science.271.5256.1736 8596937

19. Saez L, Young MW. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron. 1996;17: 911–20. Available: http://www.ncbi.nlm.nih.gov/pubmed/8938123 doi: 10.1016/s0896-6273(00)80222-6 8938123

20. Grima B, Chélot E, Xia R, Rouyer F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature. Nature Publishing Group; 2004;431: 869–873. doi: 10.1038/nature02935 15483616

21. Stoleru D, Peng Y, Agosto J, Rosbash M. Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature. Nature Publishing Group; 2004;431: 862–868. doi: 10.1038/nature02926 15483615

22. Nitabach MN, Taghert PH. Organization of the Drosophila Circadian Control Circuit. Curr Biol. Cell Press; 2008;18: R84–R93. doi: 10.1016/j.cub.2007.11.061 18211849

23. Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. National Academy of Sciences; 1971;68: 2112–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/5002428 doi: 10.1073/pnas.68.9.2112 5002428

24. Sulzman FM. Microcomputer monitoring of circadian rhythms. Comput Biol Med. Pergamon; 1982;12: 253–261. doi: 10.1016/0010-4825(82)90030-0 7151428

25. Edery I, Zwiebel LJ, Dembinska ME, Rosbash M. Temporal phosphorylation of the Drosophila period protein. Proc Natl Acad Sci U S A. National Academy of Sciences; 1994;91: 2260–4. Available: http://www.ncbi.nlm.nih.gov/pubmed/8134384 doi: 10.1073/pnas.91.6.2260 8134384

26. Hardin PE, Hall JC, Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990;343: 536–540. doi: 10.1038/343536a0 2105471

27. Ko HW, Jiang J, Edery I. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature. Nature Publishing Group; 2002;420: 673–678. doi: 10.1038/nature01272 12442174

28. Kim EY, Jeong EH, Park S, Jeong H-J, Edery I, Cho JW. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. Cold Spring Harbor Laboratory Press; 2012;26: 490–502. doi: 10.1101/gad.182378.111 22327476

29. Grima B, Dognon A, Lamouroux A, Chélot E, Rouyer F. CULLIN-3 controls TIMELESS oscillations in the Drosophila circadian clock. PLoS Biol. Public Library of Science; 2012;10: e1001367. doi: 10.1371/journal.pbio.1001367 22879814

30. Chiu JC, Ko HW, Edery I. NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed. Cell. NIH Public Access; 2011;145: 357–70. doi: 10.1016/j.cell.2011.04.002 21514639

31. Akten B, Jauch E, Genova GK, Kim EY, Edery I, Raabe T, et al. A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci. Nature Publishing Group; 2003;6: 251–257. doi: 10.1038/nn1007 12563262

32. Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998;94: 83–95. Available: http://www.ncbi.nlm.nih.gov/pubmed/9674430 doi: 10.1016/s0092-8674(00)81224-6 9674430

33. Li Y, Guo F, Shen J, Rosbash M. PDF and cAMP enhance PER stability in Drosophila clock neurons. Proc Natl Acad Sci. 2014;111: E1284–E1290. doi: 10.1073/pnas.1402562111 24707054

34. Sathyanarayanan S, Zheng X, Xiao R, Sehgal A. Posttranslational Regulation of Drosophila PERIOD Protein by Protein Phosphatase 2A. Cell. Cell Press; 2004;116: 603–615. doi: 10.1016/s0092-8674(04)00128-x 14980226

35. Fang Y, Sathyanarayanan S, Sehgal A. Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes Dev. Cold Spring Harbor Laboratory Press; 2007;21: 1506–18. doi: 10.1101/gad.1541607 17575052

36. Williams JA, Su HS, Bernards A, Field J, Sehgal A. A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science (80-). 2001;293: 2251–2256. doi: 10.1126/science.1063097 11567138

37. Dietzl G, Chen D, Schnorrer F, Su K-C, Barinova Y, Fellner M, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 2007;448: 151–156. doi: 10.1038/nature05954 17625558

38. McGuire SE, Mao Z, Davis RL. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci STKE. American Association for the Advancement of Science; 2004;2004: pl6. doi: 10.1126/stke.2202004pl6 14970377

39. Helfrich-Forster C. The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc Natl Acad Sci. 1995;92: 612–616. doi: 10.1073/pnas.92.2.612 7831339

40. Park JH, Helfrich-Forster C, Lee G, Liu L, Rosbash M, Hall JC. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci. 2000;97: 3608–3613. doi: 10.1073/pnas.070036197 10725392

41. Yang Z, Sehgal A. Role of Molecular Oscillations in Generating Behavioral Rhythms in Drosophila. Neuron. Cell Press; 2001;29: 453–467. doi: 10.1016/s0896-6273(01)00218-5 11239435

42. Stanewsky R, Jamison CF, Plautz JD, Kay SA, Hall JC. Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO J. 1997;16: 5006–5018. doi: 10.1093/emboj/16.16.5006 9305642

43. Lim C, Lee J, Choi C, Kilman VL, Kim J, Park SM, et al. The novel gene twenty-four defines a critical translational step in the Drosophila clock. Nature. NIH Public Access; 2011;470: 399–403. doi: 10.1038/nature09728 21331043

44. Frisch B, Hardin PE, Hamblen-Coyle MJ, Rosbash M, Hall JC. A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the drosophila nervous system. Neuron. 1994;12: 555–570. doi: 10.1016/0896-6273(94)90212-7 8155319

45. Ko HW, Jiang J, Edery I. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature. Nature Publishing Group; 2002;420: 673–678. doi: 10.1038/nature01272 12442174

46. Li Y, Guo F, Shen J, Rosbash M. PDF and cAMP enhance PER stability in Drosophila clock neurons. Proc Natl Acad Sci U S A. National Academy of Sciences; 2014;111: E1284–90. doi: 10.1073/pnas.1402562111 24707054

47. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T. Phosphate-binding Tag, a New Tool to Visualize Phosphorylated Proteins. Mol Cell Proteomics. 2006;5: 749–757. doi: 10.1074/mcp.T500024-MCP200 16340016

48. Chiu JC, Vanselow JT, Kramer A, Edery I. The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock. Genes Dev. 2008; doi: 10.1101/gad.1682708 18593878

49. Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F. A Phosphatase Holoenzyme Comprised of Shoc2/Sur8 and the Catalytic Subunit of PP1 Functions as an M-Ras Effector to Modulate Raf Activity. Mol Cell. 2006;22: 217–230. doi: 10.1016/j.molcel.2006.03.027 16630891

50. Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell. Elsevier; 1996;87: 651–60. doi: 10.1016/s0092-8674(00)81385-9 8929534

51. Kirchner J, Gross S, Bennett D, Alphey L. Essential, overlapping and redundant roles of the Drosophila protein phosphatase 1 alpha and 1 beta genes. Genetics. Genetics Society of America; 2007;176: 273–81. doi: 10.1534/genetics.106.069914 17513890

52. Sieburth DS, Sun Q, Han M. SUR-8, a Conserved Ras-Binding Protein with Leucine-Rich Repeats, Positively Regulates Ras-Mediated Signaling in C. elegans. Cell. 1998;94: 119–130. doi: 10.1016/s0092-8674(00)81227-1 9674433

53. Jang ER, Galperin E. The function of Shoc2: A scaffold and beyond. Commun Integr Biol. Taylor & Francis; 2016;9: e1188241. doi: 10.1080/19420889.2016.1188241 27574535

54. Lee C, Bae K, Edery I. The Drosophila CLOCK Protein Undergoes Daily Rhythms in Abundance, Phosphorylation, and Interactions with the PER–TIM Complex. Neuron. Cell Press; 1998;21: 857–867. doi: 10.1016/s0896-6273(00)80601-7 9808471

55. Bae K, Lee C, Sidote D, Chuang KY, Edery I. Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators. Mol Cell Biol. 1998;18: 6142–51. doi: 10.1128/mcb.18.10.6142 9742131

56. Yu W, Zheng H, Price JL, Hardin PE. DOUBLETIME plays a noncatalytic role to mediate CLOCK phosphorylation and repress CLOCK-dependent transcription within the Drosophila circadian clock. Mol Cell Biol. American Society for Microbiology (ASM); 2009;29: 1452–8. doi: 10.1128/MCB.01777-08 19139270

57. Kivimäe S, Saez L, Young MW. Activating PER Repressor through a DBT-Directed Phosphorylation Switch. Schibler U, editor. PLoS Biol. 2008;6: e183. doi: 10.1371/journal.pbio.0060183 18666831

58. Yi J, Chen M, Wu X, Yang X, Xu T, Zhuang Y, et al. Endothelial SUR-8 acts in an ERK-independent pathway during atrioventricular cushion development. Dev Dyn. Wiley-Blackwell; 2010;239: 2005–13. doi: 10.1002/dvdy.22343 20549726

59. Gallego M, Kang H, Virshup DM. Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem J. 2006;399: 169–175. doi: 10.1042/BJ20060678 16813562

60. Agrawal P, Hardin PE. An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock. G3: Genes|Genomes|Genetics. 2016;6: 4227–4238. doi: 10.1534/g3.116.035345 27784754

Štítky
Genetika Reprodukční medicína

Článek vyšel v časopise

PLOS Genetics


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#