SUR-8 interacts with PP1-87B to stabilize PERIOD and regulate circadian rhythms in Drosophila
Autoři:
Yongbo Xue aff001; Joanna C. Chiu aff002; Yong Zhang aff001
Působiště autorů:
Department of Biology, University of Nevada, Reno, NV, United States of America
aff001; Department of Entomology and Nematology, University of California, Davis, CA, United States of America
aff002
Vyšlo v časopise:
SUR-8 interacts with PP1-87B to stabilize PERIOD and regulate circadian rhythms in Drosophila. PLoS Genet 15(11): e32767. doi:10.1371/journal.pgen.1008475
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008475
Souhrn
Circadian rhythms are generated by endogenous pacemakers that rely on transcriptional-translational feedback mechanisms conserved among species. In Drosophila, the stability of a key pacemaker protein PERIOD (PER) is tightly controlled by changes in phosphorylation status. A number of molecular players have been implicated in PER destabilization by promoting PER progressive phosphorylation. On the other hand, there have been few reports describing mechanisms that stabilize PER by delaying PER hyperphosphorylation. Here we report that the protein Suppressor of Ras (SUR-8) regulates circadian locomotor rhythms by stabilizing PER. Depletion of SUR-8 from circadian neurons lengthened the circadian period by about 2 hours and decreased PER abundance, whereas its overexpression led to arrhythmia and an increase in PER. Specifically SUR-8 promotes the stability of PER through phosphorylation regulation. Interestingly, downregulation of the protein phosphatase 1 catalytic subunit PP1-87B recapitulated the phenotypes of SUR-8 depletion. We found that SUR-8 facilitates interactions between PP1-87B and PER. Depletion of SUR-8 decreased the interaction of PER and PP1-87B, which supports the role of SUR-8 as a scaffold protein. Interestingly, the interaction between SUR-8 and PER is temporally regulated: SUR-8 has more binding to PER at night than morning. Thus, our results indicate that SUR-8 interacts with PP1-87B to control PER stability to regulate circadian rhythms.
Klíčová slova:
Circadian oscillators – Circadian rhythms – Cytoplasm – Chronobiology – Neurons – Phosphatases – Phosphorylation – RNA interference
Zdroje
1. Ben-Shlomo R, Kyriacou CP. Circadian rhythm entrainment in flies and mammals. Cell Biochem Biophys. 2002;37: 141–156. doi: 10.1385/CBB:37:2:141 12482136
2. Glaser FT, Stanewsky R. Synchronization of the Drosophila Circadian Clock by Temperature Cycles. Cold Spring Harb Symp Quant Biol. 2007;72: 233–242. doi: 10.1101/sqb.2007.72.046 18419280
3. Yoshii T, Hermann-Luibl C, Helfrich-Förster C. Circadian light-input pathways in Drosophila. Commun Integr Biol. 2016;9: e1102805. doi: 10.1080/19420889.2015.1102805 27066180
4. Hardin PE. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet. NIH Public Access; 2011;74: 141–73. doi: 10.1016/B978-0-12-387690-4.00005-2 21924977
5. Robinson I, Reddy AB. Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett. John Wiley & Sons, Ltd; 2014;588: 2477–2483. doi: 10.1016/j.febslet.2014.06.005 24911207
6. Hurley J, Loros JJ, Dunlap JC. Dissecting the mechanisms of the clock in Neurospora. Methods Enzymol. NIH Public Access; 2015;551: 29–52. doi: 10.1016/bs.mie.2014.10.009 25662450
7. Wilsbacher LD, Takahashi JS. Circadian rhythms: molecular basis of the clock. Curr Opin Genet Dev. Elsevier Current Trends; 1998;8: 595–602. doi: 10.1016/s0959-437x(98)80017-8 9794822
8. Dubowy C, Sehgal A. Circadian Rhythms and Sleep in Drosophila melanogaster. Genetics. 2017;205: 1373–1397. doi: 10.1534/genetics.115.185157 28360128
9. Tataroglu O, Emery P. Studying circadian rhythms in Drosophila melanogaster. Methods. NIH Public Access; 2014;68: 140–50. doi: 10.1016/j.ymeth.2014.01.001 24412370
10. Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC. CYCLE Is a Second bHLH-PAS Clock Protein Essential for Circadian Rhythmicity and Transcription of Drosophila period and timeless. Cell. Cell Press; 1998;93: 805–814. doi: 10.1016/s0092-8674(00)81441-5 9630224
11. Allada R, White NE, So WV, Hall JC, Rosbash M. A Mutant Drosophila Homolog of Mammalian Clock Disrupts Circadian Rhythms and Transcription of period and timeless. Cell. Cell Press; 1998;93: 791–804. doi: 10.1016/s0092-8674(00)81440-3 9630223
12. Curtin KD, Huang ZJ, Rosbash M. Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron. 1995;14: 365–72. Available: http://www.ncbi.nlm.nih.gov/pubmed/7857645 doi: 10.1016/0896-6273(95)90292-9 7857645
13. Saez L, Young MW. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron. 1996;17: 911–20. Available: http://www.ncbi.nlm.nih.gov/pubmed/8938123 doi: 10.1016/s0896-6273(00)80222-6 8938123
14. Shafer OT, Rosbash M, Truman JW. Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J Neurosci. 2002;22: 5946–54. doi: 10.1523/JNEUROSCI.22-14-05946.2002 12122057
15. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TD, et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science. American Association for the Advancement of Science; 1998;280: 1599–603. doi: 10.1126/science.280.5369.1599 9616122
16. Lee C, Bae K, Edery I. The Drosophila CLOCK Protein Undergoes Daily Rhythms in Abundance, Phosphorylation, and Interactions with the PER–TIM Complex. Neuron. Cell Press; 1998;21: 857–867. doi: 10.1016/s0896-6273(00)80601-7 9808471
17. Zeng H, Qian Z, Myers MP, Rosbash M. A light-entrainment mechanism for the Drosophila circadian clock. Nature. Nature Publishing Group; 1996;380: 129–135. doi: 10.1038/380129a0 8600384
18. Myers MP, Wager-Smith K, Rothenfluh-Hilfiker A, Young MW. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science. American Association for the Advancement of Science; 1996;271: 1736–40. doi: 10.1126/science.271.5256.1736 8596937
19. Saez L, Young MW. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron. 1996;17: 911–20. Available: http://www.ncbi.nlm.nih.gov/pubmed/8938123 doi: 10.1016/s0896-6273(00)80222-6 8938123
20. Grima B, Chélot E, Xia R, Rouyer F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature. Nature Publishing Group; 2004;431: 869–873. doi: 10.1038/nature02935 15483616
21. Stoleru D, Peng Y, Agosto J, Rosbash M. Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature. Nature Publishing Group; 2004;431: 862–868. doi: 10.1038/nature02926 15483615
22. Nitabach MN, Taghert PH. Organization of the Drosophila Circadian Control Circuit. Curr Biol. Cell Press; 2008;18: R84–R93. doi: 10.1016/j.cub.2007.11.061 18211849
23. Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. National Academy of Sciences; 1971;68: 2112–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/5002428 doi: 10.1073/pnas.68.9.2112 5002428
24. Sulzman FM. Microcomputer monitoring of circadian rhythms. Comput Biol Med. Pergamon; 1982;12: 253–261. doi: 10.1016/0010-4825(82)90030-0 7151428
25. Edery I, Zwiebel LJ, Dembinska ME, Rosbash M. Temporal phosphorylation of the Drosophila period protein. Proc Natl Acad Sci U S A. National Academy of Sciences; 1994;91: 2260–4. Available: http://www.ncbi.nlm.nih.gov/pubmed/8134384 doi: 10.1073/pnas.91.6.2260 8134384
26. Hardin PE, Hall JC, Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990;343: 536–540. doi: 10.1038/343536a0 2105471
27. Ko HW, Jiang J, Edery I. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature. Nature Publishing Group; 2002;420: 673–678. doi: 10.1038/nature01272 12442174
28. Kim EY, Jeong EH, Park S, Jeong H-J, Edery I, Cho JW. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. Cold Spring Harbor Laboratory Press; 2012;26: 490–502. doi: 10.1101/gad.182378.111 22327476
29. Grima B, Dognon A, Lamouroux A, Chélot E, Rouyer F. CULLIN-3 controls TIMELESS oscillations in the Drosophila circadian clock. PLoS Biol. Public Library of Science; 2012;10: e1001367. doi: 10.1371/journal.pbio.1001367 22879814
30. Chiu JC, Ko HW, Edery I. NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed. Cell. NIH Public Access; 2011;145: 357–70. doi: 10.1016/j.cell.2011.04.002 21514639
31. Akten B, Jauch E, Genova GK, Kim EY, Edery I, Raabe T, et al. A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci. Nature Publishing Group; 2003;6: 251–257. doi: 10.1038/nn1007 12563262
32. Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998;94: 83–95. Available: http://www.ncbi.nlm.nih.gov/pubmed/9674430 doi: 10.1016/s0092-8674(00)81224-6 9674430
33. Li Y, Guo F, Shen J, Rosbash M. PDF and cAMP enhance PER stability in Drosophila clock neurons. Proc Natl Acad Sci. 2014;111: E1284–E1290. doi: 10.1073/pnas.1402562111 24707054
34. Sathyanarayanan S, Zheng X, Xiao R, Sehgal A. Posttranslational Regulation of Drosophila PERIOD Protein by Protein Phosphatase 2A. Cell. Cell Press; 2004;116: 603–615. doi: 10.1016/s0092-8674(04)00128-x 14980226
35. Fang Y, Sathyanarayanan S, Sehgal A. Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes Dev. Cold Spring Harbor Laboratory Press; 2007;21: 1506–18. doi: 10.1101/gad.1541607 17575052
36. Williams JA, Su HS, Bernards A, Field J, Sehgal A. A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science (80-). 2001;293: 2251–2256. doi: 10.1126/science.1063097 11567138
37. Dietzl G, Chen D, Schnorrer F, Su K-C, Barinova Y, Fellner M, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 2007;448: 151–156. doi: 10.1038/nature05954 17625558
38. McGuire SE, Mao Z, Davis RL. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci STKE. American Association for the Advancement of Science; 2004;2004: pl6. doi: 10.1126/stke.2202004pl6 14970377
39. Helfrich-Forster C. The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc Natl Acad Sci. 1995;92: 612–616. doi: 10.1073/pnas.92.2.612 7831339
40. Park JH, Helfrich-Forster C, Lee G, Liu L, Rosbash M, Hall JC. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci. 2000;97: 3608–3613. doi: 10.1073/pnas.070036197 10725392
41. Yang Z, Sehgal A. Role of Molecular Oscillations in Generating Behavioral Rhythms in Drosophila. Neuron. Cell Press; 2001;29: 453–467. doi: 10.1016/s0896-6273(01)00218-5 11239435
42. Stanewsky R, Jamison CF, Plautz JD, Kay SA, Hall JC. Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO J. 1997;16: 5006–5018. doi: 10.1093/emboj/16.16.5006 9305642
43. Lim C, Lee J, Choi C, Kilman VL, Kim J, Park SM, et al. The novel gene twenty-four defines a critical translational step in the Drosophila clock. Nature. NIH Public Access; 2011;470: 399–403. doi: 10.1038/nature09728 21331043
44. Frisch B, Hardin PE, Hamblen-Coyle MJ, Rosbash M, Hall JC. A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the drosophila nervous system. Neuron. 1994;12: 555–570. doi: 10.1016/0896-6273(94)90212-7 8155319
45. Ko HW, Jiang J, Edery I. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature. Nature Publishing Group; 2002;420: 673–678. doi: 10.1038/nature01272 12442174
46. Li Y, Guo F, Shen J, Rosbash M. PDF and cAMP enhance PER stability in Drosophila clock neurons. Proc Natl Acad Sci U S A. National Academy of Sciences; 2014;111: E1284–90. doi: 10.1073/pnas.1402562111 24707054
47. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T. Phosphate-binding Tag, a New Tool to Visualize Phosphorylated Proteins. Mol Cell Proteomics. 2006;5: 749–757. doi: 10.1074/mcp.T500024-MCP200 16340016
48. Chiu JC, Vanselow JT, Kramer A, Edery I. The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock. Genes Dev. 2008; doi: 10.1101/gad.1682708 18593878
49. Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F. A Phosphatase Holoenzyme Comprised of Shoc2/Sur8 and the Catalytic Subunit of PP1 Functions as an M-Ras Effector to Modulate Raf Activity. Mol Cell. 2006;22: 217–230. doi: 10.1016/j.molcel.2006.03.027 16630891
50. Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell. Elsevier; 1996;87: 651–60. doi: 10.1016/s0092-8674(00)81385-9 8929534
51. Kirchner J, Gross S, Bennett D, Alphey L. Essential, overlapping and redundant roles of the Drosophila protein phosphatase 1 alpha and 1 beta genes. Genetics. Genetics Society of America; 2007;176: 273–81. doi: 10.1534/genetics.106.069914 17513890
52. Sieburth DS, Sun Q, Han M. SUR-8, a Conserved Ras-Binding Protein with Leucine-Rich Repeats, Positively Regulates Ras-Mediated Signaling in C. elegans. Cell. 1998;94: 119–130. doi: 10.1016/s0092-8674(00)81227-1 9674433
53. Jang ER, Galperin E. The function of Shoc2: A scaffold and beyond. Commun Integr Biol. Taylor & Francis; 2016;9: e1188241. doi: 10.1080/19420889.2016.1188241 27574535
54. Lee C, Bae K, Edery I. The Drosophila CLOCK Protein Undergoes Daily Rhythms in Abundance, Phosphorylation, and Interactions with the PER–TIM Complex. Neuron. Cell Press; 1998;21: 857–867. doi: 10.1016/s0896-6273(00)80601-7 9808471
55. Bae K, Lee C, Sidote D, Chuang KY, Edery I. Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators. Mol Cell Biol. 1998;18: 6142–51. doi: 10.1128/mcb.18.10.6142 9742131
56. Yu W, Zheng H, Price JL, Hardin PE. DOUBLETIME plays a noncatalytic role to mediate CLOCK phosphorylation and repress CLOCK-dependent transcription within the Drosophila circadian clock. Mol Cell Biol. American Society for Microbiology (ASM); 2009;29: 1452–8. doi: 10.1128/MCB.01777-08 19139270
57. Kivimäe S, Saez L, Young MW. Activating PER Repressor through a DBT-Directed Phosphorylation Switch. Schibler U, editor. PLoS Biol. 2008;6: e183. doi: 10.1371/journal.pbio.0060183 18666831
58. Yi J, Chen M, Wu X, Yang X, Xu T, Zhuang Y, et al. Endothelial SUR-8 acts in an ERK-independent pathway during atrioventricular cushion development. Dev Dyn. Wiley-Blackwell; 2010;239: 2005–13. doi: 10.1002/dvdy.22343 20549726
59. Gallego M, Kang H, Virshup DM. Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem J. 2006;399: 169–175. doi: 10.1042/BJ20060678 16813562
60. Agrawal P, Hardin PE. An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock. G3: Genes|Genomes|Genetics. 2016;6: 4227–4238. doi: 10.1534/g3.116.035345 27784754
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 11
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Akutní intermitentní porfyrie
- Šanci na úspěšný průběh těhotenství snižují nevhodné hladiny progesteronu vznikající při umělém oplodnění
- Vztah užívání alkoholu a mužské fertility
Nejčtenější v tomto čísle
- The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)
- A circadian output center controlling feeding:Fasting rhythms in Drosophila
- AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation
- Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis