Cardiac Snail family of transcription factors directs systemic lipid metabolism in Drosophila
Autoři:
Ying Liu aff001; Hong Bao aff001; Weidong Wang aff002; Hui-Ying Lim aff001
Působiště autorů:
Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
aff001; Department of Medicine, Section of Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
aff002
Vyšlo v časopise:
Cardiac Snail family of transcription factors directs systemic lipid metabolism in Drosophila. PLoS Genet 15(11): e32767. doi:10.1371/journal.pgen.1008487
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008487
Souhrn
Maintenance of normal lipid homeostasis is crucial to heart function. On the other hand, the heart is now recognized to serve an important role in regulating systemic lipid metabolism; however, the molecular basis remains unclear. In this study, we identify the Drosophila Snail family of transcription factors (herein termed Sna TFs) as new mediators of the heart control of systemic lipid metabolism. Overexpression of Sna TF genes specifically in the heart promotes whole-body leanness whereas their knockdown in the heart promotes obesity. In addition, flies that are heterozygous for a snail deficiency chromosome also exhibit systemic obesity, and that cardiac-specific overexpression of Sna substantially reverses systemic obesity in these flies. We further show that genetically manipulating Sna TF levels in the fat body and intestine do not affect systemic lipid levels. Mechanistically, we find that flies bearing the overexpression or inhibition of Sna TFs in the postnatal heart only exhibit systemic lipid metabolic defects but not heart abnormalities. Cardiac-specific alterations of Sna TF levels also do not perturb cardiac morphology, viability, lipid metabolism or fly food intake. On the other hand, cardiac-specific manipulations of Sna TF levels alter lipogenesis and lipolysis gene expression, mitochondrial biogenesis and respiration, and lipid storage droplet 1 and 2 (Lsd-1 and Lsd-2) levels in the fat body. Together, our results reveal a novel and specific role of Sna TFs in the heart on systemic lipid homeostasis maintenance that is independent of cardiac development and function and involves the governance of triglyceride synthesis and breakdown, energy utilization, and lipid droplet dynamics in the fat body.
Klíčová slova:
Fats – Gastrointestinal tract – Hyperexpression techniques – Lipid analysis – Lipid metabolism – Lipids – Mitochondria
Zdroje
1. Goldberg IJ, Trent CM, Schulze PC. Lipid Metabolism and Toxicity in the Heart. Cell Metab. 2012;15(6):805–12. doi: 10.1016/j.cmet.2012.04.006 22682221
2. Kisch B. A Significant Electron Microscopic Difference between Atria and Ventricles of Mammalian Heart. Exp Med Surg. 1963;21(4):193-+.
3. Jamieson JD, Palade GE. Specific Granules in Atrial Muscle Cells. J Cell Biol. 1964;23(1):151-+. doi: 10.1083/jcb.23.1.151 14228508
4. Flynn TG, Debold ML, Debold AJ. The Amino-Acid-Sequence of an Atrial Peptide with Potent Diuretic and Natriuretic Properties. Biochem Bioph Res Co. 1983;117(3):859–65. doi: 10.1016/0006-291x(83)91675-3
5. Kambayashi Y, Nakao K, Mukoyama M, Saito Y, Ogawa Y, Shiono S, et al. Isolation and Sequence Determination of Human-Brain Natriuretic Peptide in Human Atrium. Febs Lett. 1990;259(2):341–5. doi: 10.1016/0014-5793(90)80043-i 2136732
6. Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi XX, et al. A Cardiac MicroRNA Governs Systemic Energy Homeostasis by Regulation of MED13. Cell. 2012;149(3):671–83. doi: 10.1016/j.cell.2012.03.029 22541436
7. Baskin KK, Grueter CE, Kusminski CM, Holland WL, Bookout AL, Satapati S, et al. MED13-dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver. EMBO Mol Med. 2014;6(12):1610–21. doi: 10.15252/emmm.201404218 25422356.
8. Lee JH, Bassel-Duby R, Olson EN. Heart- and muscle-derived signaling system dependent on MED13 and Wingless controls obesity in Drosophila. P Natl Acad Sci USA. 2014;111(26):9491–6. doi: 10.1073/pnas.1409427111 24979807
9. Lee S, Bao H, Ishikawa Z, Wang WD, Lim HY. Cardiomyocyte Regulation of Systemic Lipid Metabolism by the Apolipoprotein B-Containing Lipoproteins in Drosophila. Plos Genet. 2017;13(1). doi: 10.1371/journal.pgen.1006555 28095410
10. Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005;132(14):3151–61. doi: 10.1242/dev.01907 15983400
11. Boulay JL, Dennefeld C, Alberga A. The Drosophila Developmental Gene Snail Encodes a Protein with Nucleic-Acid Binding Fingers. Nature. 1987;330(6146):395–8. doi: 10.1038/330395a0 3683556
12. Alberga A, Boulay JL, Kempe E, Dennefeld C, Haenlin M. The Snail Gene Required for Mesoderm Formation in Drosophila Is Expressed Dynamically in Derivatives of All 3 Germ Layers. Development. 1991;111(4):983–92. 1879366
13. Leptin M. Twist and Snail as Positive and Negative Regulators during Drosophila Mesoderm Development. Gene Dev. 1991;5(9):1568–76. doi: 10.1101/gad.5.9.1568 1884999
14. Ashraf SI, Hu XD, Roote J, Ip YT. The mesoderm determinant Snail collaborates with related zinc-finger proteins to control Drosophila neurogenesis. Embo J. 1999;18(22):6426–38. doi: 10.1093/emboj/18.22.6426 10562554
15. Ashraf SI, Ip YT. The Snail protein family regulates neuroblast expression of inscuteable and string, genes involved in asymmetry and cell division in Drosophila. Development. 2001;128(23):4757–67. 11731456
16. Cai Y, Chia W, Yang XH. A family of snail-related zinc finger proteins regulates two distinct and parallel mechanisms that mediate Drosophila neuroblast asymmetric divisions. Embo J. 2001;20(7):1704–14. doi: 10.1093/emboj/20.7.1704 11285234
17. Fuse N, Hirose S, Hayashi S. Determination of wing cell fate by the escargot and snail genes in Drosophila. Development. 1996;122(4):1059–67. 8620833
18. Lim HY, Tomlinson A. Organization of the peripheral fly eye: the roles of Snail family transcription factors in peripheral retinal apoptosis. Development. 2006;133(18):3529–37. doi: 10.1242/dev.02524 16914498
19. Nieto MA, Bennett MF, Sargent MG, Wilkinson DG. Cloning and Developmental Expression of Sna, a Murine Homolog of the Drosophila-Snail Gene. Development. 1992;116(1):227–37. 1483390
20. Sun CX, Jiang L, Liu Y, Shen H, Weiss SJ, Zhou YF, et al. Adipose Snail1 Regulates Lipolysis and Lipid Partitioning by Suppressing Adipose Triacylglycerol Lipase Expression. Cell Rep. 2016;17(8):2015–27. doi: 10.1016/j.celrep.2016.10.070 27851965
21. Liu Y, Jiang L, Sun CX, Ireland N, Shah YM, Liu Y, et al. Insulin/Snail1 axis ameliorates fatty liver disease by epigenetically suppressing lipogenesis. Nat Commun. 2018;9. doi: 10.1038/s41467-018-05309-y 30013137
22. Sellin J, Albrecht S, Kolsch V, Paululat A. Dynamics of heart differentiation, visualized utilizing heart enhancer elements of the Drosophila melanogaster bHLH transcription factor Hand. Gene Expr Patterns. 2006;6(4):360–75. doi: 10.1016/j.modgep.2005.09.012 16455308
23. Musselman LP, Kuhnlein RP. Drosophila as a model to study obesity and metabolic disease. J Exp Biol. 2018;221. doi: 10.1242/jeb.163881 29514880
24. Hocking S, Samocha-Bonet D, Milner KL, Greenfield JR, Chisholm DJ. Adiposity and Insulin Resistance in Humans: The Role of the Different Tissue and Cellular Lipid Depots. Endocr Rev. 2013;34(4):463–500. doi: 10.1210/er.2012-1041 23550081
25. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 2010;375(9733):2267–77. doi: 10.1016/S0140-6736(10)60408-4 20609972
26. Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA. Drosophila's insulin/P13-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell. 2002;2(2):239–49. doi: 10.1016/s1534-5807(02)00117-x 11832249
27. Buchon N, Osman D, David FPA, Fang HY, Boquete JP, Deplancke B, et al. Morphological and Molecular Characterization of Adult Midgut Compartmentalization in Drosophila. Cell Rep. 2013;3(5):1725–38. doi: 10.1016/j.celrep.2013.04.001 23643535
28. Osterwalder T, Yoon KS, White BH, Keshishian H. A conditional tissue-specific transgene expression system using inducible GAL4. P Natl Acad Sci USA. 2001;98(22):12596–601. doi: 10.1073/pnas.221303298 11675495
29. Rowe RG, Lin Y, Shimizu-Hirota R, Hanada S, Neilson EG, Greenson JK, et al. Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol Cell Biol. 2011;31(12):2392–403. doi: 10.1128/MCB.01218-10 21482667
30. Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J, Nieto MA. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. Embo J. 2006;25(23):5603–13. doi: 10.1038/sj.emboj.7601421 17093497.
31. Biswas H, Longmore GD. Action of SNAIL1 in Cardiac Myofibroblasts Is Important for Cardiac Fibrosis following Hypoxic Injury. Plos One. 2016;11(10):e0162636. doi: 10.1371/journal.pone.0162636 27706205.
32. Lee SW, Won JY, Kim WJ, Lee J, Kim KH, Youn SW, et al. Snail as a Potential Target Molecule in Cardiac Fibrosis: Paracrine Action of Endothelial Cells on Fibroblasts Through Snail and CTGF Axis. Molecular Therapy. 2013;21(9):1767–77. doi: 10.1038/mt.2013.146 23760445
33. Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol. 2018;68–69:490–506. doi: 10.1016/j.matbio.2018.01.013 29371055
34. Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fang AY, Liong JC, et al. Prandiology of Drosophila and the CAFE assay. P Natl Acad Sci USA. 2007;104(20):8253–6. doi: 10.1073/pnas.0702726104 17494737
35. Miyoshi H, Perfield JW, Obin MS, Greenberg AS. Adipose Triglyceride Lipase Regulates Basal Lipolysis and Lipid Droplet Size in Adipocytes. J Cell Biochem. 2008;105(6):1430–6. doi: 10.1002/jcb.21964 18980248
36. Nishizawa H, Shimomura I. Fat cell lipolysis and future weight gain. J Diabetes Invest. 2019;10(2):221–3. doi: 10.1111/jdi.12950 30290069
37. Haemmerle G, Zimmermann R, Lass A, Hofler G, Wagner E, Zechner R. Adipose triglyceride lipase: Functional role in fat cell lipolysis and involvement in lipid and energy metabolism. Atherosclerosis Supp. 2006;7(3):15-. doi: 10.1016/S1567-5688(06)80037-1
38. Chondronikola M, Volpi E, Borsheim E, Porter C, Saraf MK, Annamalai P, et al. Brown Adipose Tissue Activation Is Linked to Distinct Systemic Effects on Lipid Metabolism in Humans. Cell Metab. 2016;23(6):1200–6. doi: 10.1016/j.cmet.2016.04.029 27238638
39. Lodhi IJ, Yin L, Jensen-Urstad APL, Funai K, Coleman T, Baird JH, et al. Inhibiting Adipose Tissue Lipogenesis Reprograms Thermogenesis and PPAR gamma Activation to Decrease Diet-Induced Obesity. Cell Metab. 2012;16(2):189–201. doi: 10.1016/j.cmet.2012.06.013 22863804
40. Ritz P, Berrut G. Mitochondrial function, energy expenditure, aging and insulin resistance. Diabetes Metab. 2005;31:S67–S73. doi: 10.1016/S1262-3636(05)73654-5
41. Hey-Mogensen M, Clausen TR. Targeting Mitochondrial Biogenesis and Mitochondrial Substrate Utilization to Treat Obesity and Insulin Resistance, Respectively—Two Data-Driven Hypotheses. Curr Diabetes Rev. 2017;13(4):395–404. doi: 10.2174/1573399812666160217122827 26900133
42. Shiraishi T, Verdone JE, Huang J, Kahlert UD, Hernandez JR, Torga G, et al. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget. 2015;6(1):130–43. doi: 10.18632/oncotarget.2766 25426557
43. Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Bba-Mol Cell Biol L. 2017;1862(10):1221–32. doi: 10.1016/j.bbalip.2017.07.009 28754637
44. Gronke S, Beller M, Fellert S, Ramakrishnan H, Jackle H, Kuhnlein RP. Control of fat storage by a Drosophila PAT domain protein. Curr Biol. 2003;13(7):603–6. doi: 10.1016/s0960-9822(03)00175-1 12676093
45. Beller M, Bulankina AV, Hsiao HH, Urlaub H, Jackle H, Kuhnlein RP. PERILIPIN- Dependent Control of Lipid Droplet Structure and Fat Storage in Drosophila. Cell Metab. 2010;12(5):521–32. doi: 10.1016/j.cmet.2010.10.001 21035762
46. Teixeira L, Rabouille C, Rorth P, Ephrussi A, Vanzo NF. Drosophila perilipin/ADRP homologue Lsd2 regulates lipid metabolism. Mech Develop. 2003;120(9):1071–81. doi: 10.1016/S0925-4773(03)00158-8
47. Bi JF, Xiang YH, Chen HY, Liu ZH, Gronke S, Kuhnlein RP, et al. Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J Cell Sci. 2012;125(15):3568–77. doi: 10.1242/jcs.101329 22505614
48. Itabe H, Yamaguchi T, Nimura S, Sasabe N. Perilipins: a diversity of intracellular lipid droplet proteins. Lipids Health Dis. 2017;16. doi: 10.1186/s12944-017-0473-y 28454542
49. Wolins NE, Quaynor B, Skinner JR, Finck BN, Bickel PE. ALMPAT is a novel PPAR- regulated lipid droplet protein. Diabetes. 2005;54:A72–A.
50. Coleman RA, Lee DP. Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res. 2004;43(2):134–76. doi: 10.1016/s0163-7827(03)00051-1 14654091
51. Takeuchi K, Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol-Endoc M. 2009;296(6):E1195–E209. doi: 10.1152/ajpendo.90958.2008 19336658
52. Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, Gavrilova O, et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. P Natl Acad Sci USA. 2001;98(11):6494–9. doi: 10.1073/pnas.101042998 11371650
53. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, et al. The role of lipid droplets in metabolic disease in rodents and humans. Journal of Clinical Investigation. 2011;121(6):2102–10. doi: 10.1172/JCI46069 21633178
54. Wang H, Sreenevasan U, Hu H, Saladino A, Polster BM, Lund LM, et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res. 2011;52(12):2159–68. doi: 10.1194/jlr.M017939 21885430
55. Wang H, Sztalryd C. Oxidative tissue: perilipin 5 links storage with the furnace. Trends Endocrin Met. 2011;22(6):197–203. doi: 10.1016/j.tem.2011.03.008 21632259
56. Koves TR, Sparks LM, Kovalik JP, Mosedale M, Arumugam R, DeBalsi KL, et al. PPAR gamma coactivator-1 alpha contributes to exercise-induced regulation of intramuscular lipid droplet programming in mice and humans. J Lipid Res. 2013;54(2):522–34. doi: 10.1194/jlr.P028910 23175776
57. Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol. 2014;5. doi: 10.3389/fphys.2014.00282 25132820
58. Diegelmann S, Jansen A, Jois S, Kastenholz K, Escarcena LV, Strudthoff N, et al. The CApillary FEeder Assay Measures Food Intake in Drosophila melanogaster. Jove-J Vis Exp. 2017;(121). doi: 10.3791/55024 28362419
59. Barry WE, Thummel CS. The Drosophila HNF4 nuclear receptor promotes glucose- stimulated insulin secretion and mitochondrial function in adults. Elife. 2016;5. doi: 10.7554/eLife.11183 27185732
60. Fink M, Callol-Massot C, Chu A, Ruiz-Lozano P, Belmonte JCI, Giles W, et al. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques. 2009;46(2):101-+. doi: 10.2144/000113078 19317655
61. Ding L, Yang X, Tian H, Liang JJ, Zhang FX, Wang GD, et al. Seipin regulates lipid homeostasis by ensuring calcium-dependent mitochondrial metabolism. Embo J. 2018;37(17). doi: 10.15252/embj.201797572. 30049710
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 11
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Akutní intermitentní porfyrie
- Vztah užívání alkoholu a mužské fertility
- Šanci na úspěšný průběh těhotenství snižují nevhodné hladiny progesteronu vznikající při umělém oplodnění
Nejčtenější v tomto čísle
- The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)
- A circadian output center controlling feeding:Fasting rhythms in Drosophila
- AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation
- Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis