Genome-wide identification of short 2′,3′-cyclic phosphate-containing RNAs and their regulation in aging
Autoři:
Megumi Shigematsu aff001; Keisuke Morichika aff001; Takuya Kawamura aff001; Shozo Honda aff001; Yohei Kirino aff001
Působiště autorů:
Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
aff001
Vyšlo v časopise:
Genome-wide identification of short 2′,3′-cyclic phosphate-containing RNAs and their regulation in aging. PLoS Genet 15(11): e32767. doi:10.1371/journal.pgen.1008469
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008469
Souhrn
RNA molecules generated by ribonuclease cleavage sometimes harbor a 2′,3′-cyclic phosphate (cP) at their 3′-ends. Those cP-containing RNAs (cP-RNAs) form a hidden layer of transcriptome because standard RNA-seq cannot capture them as a result of cP’s prevention of an adapter ligation reaction. Here we provide genome-wide analyses of short cP-RNA transcriptome across multiple mouse tissues. Using cP-RNA-seq that can exclusively sequence cP-RNAs, we identified numerous novel cP-RNA species which are mainly derived from cytoplasmic tRNAs, mRNAs, and rRNAs. Determination of the processing sites of substrate RNAs for cP-RNA generation revealed highly-specific RNA cleavage events between cytidine and adenosine in cP-RNA biogenesis. cP-RNAs were not evenly derived from the overall region of substrate RNAs but rather from specific sites, implying that cP-RNAs are not from random degradation but are produced through a regulated biogenesis pathway. The identified cP-RNAs were abundantly accumulated in mouse tissues, and the expression levels of cP-RNAs showed age-dependent reduction. These analyses of cP-RNA transcriptome unravel a novel, abundant class of non-coding RNAs whose expression could have physiological roles.
Klíčová slova:
Mammalian genomics – Non-coding RNA – Non-coding RNA sequences – Ribosomal RNA – RNA sequencing – Sequence assembly tools – Transfer RNA – Small nucleolar RNA
Zdroje
1. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17: 333–351. doi: 10.1038/nrg.2016.49 27184599
2. Marguerat S, Bahler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67: 569–579. doi: 10.1007/s00018-009-0180-6 19859660
3. Costa V, Aprile M, Esposito R, Ciccodicola A (2013) RNA-Seq and human complex diseases: recent accomplishments and future perspectives. Eur J Hum Genet 21: 134–142. doi: 10.1038/ejhg.2012.129 22739340
4. Shigematsu M, Kawamura T, Kirino Y (2018) Generation of 2',3'-Cyclic Phosphate-Containing RNAs as a Hidden Layer of the Transcriptome. Front Genet 9: 562. doi: 10.3389/fgene.2018.00562 30538719
5. Yamasaki S, Ivanov P, Hu GF, Anderson P (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185: 35–42. doi: 10.1083/jcb.200811106 19332886
6. Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, et al. (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285: 10959–10968. doi: 10.1074/jbc.M109.077560 20129916
7. Ivanov P, Emara MM, Villén J, Gygi SP, Anderson P (2011) Angiogenin-Induced tRNA Fragments Inhibit Translation Initiation. Molecular Cell 43: 613–623. doi: 10.1016/j.molcel.2011.06.022 21855800
8. Ivanov P, O'Day E, Emara MM, Wagner G, Lieberman J, et al. (2014) G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci U S A 111: 18201–18206. doi: 10.1073/pnas.1407361111 25404306
9. Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, et al. (2014) Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J 33: 2020–2039. doi: 10.15252/embj.201489282 25063673
10. Honda S, Loher P, Shigematsu M, Palazzo JP, Suzuki R, et al. (2015) Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci U S A 112: E3816–3825. doi: 10.1073/pnas.1510077112 26124144
11. Honda S, Kirino Y. (2015) SHOT-RNAs: a novel class of tRNA-derived functional RNAs expressed in hormone-dependent cancers. Mol Cell Onco 3: e1079672. doi: 10.1080/23723556.2015.1079672 27308603
12. Honda S, Morichika K, Kirino Y (2016) Selective amplification and sequencing of cyclic phosphate-containing RNAs by the cP-RNA-seq method. Nat Protoc 11: 476–489. doi: 10.1038/nprot.2016.025 26866791
13. Dhahbi JM, Spindler SR, Atamna H, Yamakawa A, Boffelli D, et al. (2013) 5' tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics 14: 298. doi: 10.1186/1471-2164-14-298 23638709
14. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, et al. (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351: 391–396. doi: 10.1126/science.aad6780 26721685
15. Shigematsu M, Honda S, Kirino Y (2014) Transfer RNA as a source of small functional RNA. J Mol Biol Mol Imaging 1. 26389128
16. Loher P, Telonis AG, Rigoutsos I (2017) MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data. Sci Rep 7: 41184. doi: 10.1038/srep41184 28220888
17. Pliatsika V, Loher P, Telonis AG, Rigoutsos I (2016) MINTbase: a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments. Bioinformatics 32: 2481–2489. doi: 10.1093/bioinformatics/btw194 27153631
18. Telonis AG, Loher P, Honda S, Jing Y, Palazzo J, et al. (2015) Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget 6: 24797–24822. doi: 10.18632/oncotarget.4695 26325506
19. Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37: D93–97. doi: 10.1093/nar/gkn787 18984615
20. Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26: 148–153. doi: 10.1093/nar/26.1.148 9399820
21. Shigematsu M, Kirino Y. (2017) 5'-Terminal nucleotide variations in human cytoplasmic tRNAHisGUG and its 5'-halves. RNA 23: 161–168. doi: 10.1261/rna.058024.116 27879434
22. Czech A, Wende S, Mörl M, Pan T, Ignatova Z (2013) Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet 9: e1003767. doi: 10.1371/journal.pgen.1003767 24009533
23. Schutz K, Hesselberth JR, Fields S (2010) Capture and sequence analysis of RNAs with terminal 2',3'-cyclic phosphates. RNA 16: 621–631. doi: 10.1261/rna.1934910 20075163
24. Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5: 606–616. doi: 10.1038/nri1669 16056254
25. Wang LK, Shuman S (2002) Mutational analysis defines the 5'-kinase and 3'-phosphatase active sites of T4 polynucleotide kinase. Nucleic Acids Res 30: 1073–1080. doi: 10.1093/nar/30.4.1073 11842120
26. Honda S, Kawamura T, Loher P, Morichika K, Rigoutsos I, et al. (2017) The biogenesis pathway of tRNA-derived piRNAs in Bombyx germ cells. Nucleic Acids Res 45: 9108–9120. doi: 10.1093/nar/gkx537 28645172
27. Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, et al. (2009) Absolute quantification of microRNAs by using a universal reference. RNA 15: 2375–2384. doi: 10.1261/rna.1754109 19861428
28. Shapiro R, Riordan JF, Vallee BL (1986) Characteristic ribonucleolytic activity of human angiogenin. Biochemistry 25: 3527–3532. doi: 10.1021/bi00360a008 2424496
29. Harper JW, Vallee BL (1989) A covalent angiogenin/ribonuclease hybrid with a fourth disulfide bond generated by regional mutagenesis. Biochemistry 28: 1875–1884. doi: 10.1021/bi00430a067 2719939
30. Nikolaev Y, Deillon C, Hoffmann SR, Bigler L, Friess S, et al. (2010) The leucine zipper domains of the transcription factors GCN4 and c-Jun have ribonuclease activity. PLoS One 5: e10765. doi: 10.1371/journal.pone.0010765 20505831
31. Honda S, Kirino Y, Maragkakis M, Alexiou P, Ohtaki A, et al. (2013) Mitochondrial protein BmPAPI modulates the length of mature piRNAs. RNA 19: 1405–1418. doi: 10.1261/rna.040428.113 23970546
32. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25. doi: 10.1186/gb-2009-10-3-r25 19261174
33. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26. doi: 10.1038/nbt.1754 21221095
34. Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, et al. (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6: 26. doi: 10.1186/1748-7188-6-26 22115189
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 11
- Management pacientů s MPN a neobvyklou kombinací genových přestaveb – systematický přehled a kazuistiky
- Management péče o pacientku s karcinomem ovaria a neočekávanou mutací CDH1 – kazuistika
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Vliv kvality morfologie spermií na úspěšnost intrauterinní inseminace
- Akutní intermitentní porfyrie
Nejčtenější v tomto čísle
- The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)
- A circadian output center controlling feeding:Fasting rhythms in Drosophila
- AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation
- Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis