The fitness landscape of the African Salmonella Typhimurium ST313 strain D23580 reveals unique properties of the pBT1 plasmid
Autoři:
Rocío Canals aff001; Roy R. Chaudhuri aff002; Rebecca E. Steiner aff003; Siân V. Owen aff001; Natalia Quinones-Olvera aff005; Melita A. Gordon aff006; Michael Baym aff005; Michael Ibba aff003; Jay C. D. Hinton aff001
Působiště autorů:
Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
aff001; Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
aff002; Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
aff003; Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
aff004; Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
aff005; Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
aff006; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi, Central Africa
aff007
Vyšlo v časopise:
The fitness landscape of the African Salmonella Typhimurium ST313 strain D23580 reveals unique properties of the pBT1 plasmid. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1007948
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1007948
Souhrn
We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of the African Salmonella enterica serovar Typhimurium ST313 strain D23580, to complement our previous comparative genomic and functional transcriptomic studies. We used a genome-wide transposon library with insertions every 10 nucleotides to identify genes required for survival and growth in vitro and during infection of murine macrophages. The analysis revealed genomic regions important for fitness under two in vitro growth conditions. Overall, 724 coding genes were required for optimal growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal medium. These findings were consistent with the essentiality analyses of other S. Typhimurium ST19 and S. Typhi strains. The global mutagenesis approach also identified 60 sRNAs and 413 intergenic regions required for growth in at least one in vitro growth condition. By infecting murine macrophages with the transposon library, we identified 68 genes that were required for intra-macrophage replication but did not impact fitness in vitro. None of these genes were unique to S. Typhimurium D23580, consistent with a high conservation of gene function between S. Typhimurium ST313 and ST19 and suggesting that novel virulence factors are not involved in the interaction of strain D23580 with murine macrophages. We discovered that transposon insertions rarely occurred in many pBT1 plasmid-encoded genes (36), compared with genes carried by the pSLT-BT virulence plasmid and other bacterial plasmids. The key essential protein encoded by pBT1 is a cysteinyl-tRNA synthetase, and our enzymological analysis revealed that the plasmid-encoded CysRSpBT1 had a lower ability to charge tRNA than the chromosomally-encoded CysRSchr enzyme. The presence of aminoacyl-tRNA synthetases in plasmids from a range of Gram-negative and Gram-positive bacteria suggests that plasmid-encoded essential genes are more common than had been appreciated.
Klíčová slova:
Biosynthesis – Genomic libraries – Macrophages – Plasmid construction – Salmonella typhimurium – Transposable elements – Salmonella typhi – Aminoacyl-tRNA synthetases
Zdroje
1. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, et al. The Global Burden of Nontyphoidal Salmonella Gastroenteritis. Clin Infect Dis. 2010;50: 882–889. doi: 10.1086/650733 20158401
2. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, et al. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota. PLOS Biol. 2007;5: e244. doi: 10.1371/journal.pbio.0050244 17760501
3. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467: 426–429. doi: 10.1038/nature09415 20864996
4. Fields PI, Swanson RV, Haidaris CG, Heffron F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci. 1986;83: 5189–5193. doi: 10.1073/pnas.83.14.5189 3523484
5. Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet. 2012;379: 2489–2499. doi: 10.1016/S0140-6736(11)61752-2 22587967
6. Gordon M, Banda H, Gondwe M, Gordon S, Boeree M, Walsh A, et al. Non-typhoidal salmonella bacteraemia among HIV-infected Malawian adults: high mortality and frequent recrudescence. Aids. 2002;16: 1633–1641. doi: 10.1097/00002030-200208160-00009 12172085
7. MacLennan CA, Gilchrist JJ, Gordon MA, Cunningham AF, Cobbold M, Goodall M, et al. Dysregulated Humoral Immunity to Nontyphoidal Salmonella in HIV-Infected African Adults. Science. 2010;328: 508–512. doi: 10.1126/science.1180346 20413503
8. Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, Winter SE, et al. Simian immunodeficiency virus–induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med. 2008;14: 421–428. doi: 10.1038/nm1743 18376406
9. Lê-Bury G, Niedergang F. Defective Phagocytic Properties of HIV-Infected Macrophages: How Might They Be Implicated in the Development of Invasive Salmonella Typhimurium? Front Immunol. 2018;9: 531. doi: 10.3389/fimmu.2018.00531 29628924
10. Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J, Muyodi J, et al. Invasive multidrug-resistant non-typhoidal Salmonella infections in Africa: zoonotic or anthroponotic transmission? J Med Microbiol. 2006;55: 585–591. doi: 10.1099/jmm.0.46375-0 16585646
11. Gordon MA, Graham SM, Walsh AL, Wilson L, Phiri A, Molyneux E, et al. Epidemics of Invasive Salmonella enterica Serovar Enteritidis and S. enterica Serovar Typhimurium Infection Associated with Multidrug Resistance among Adults and Children in Malawi. Clin Infect Dis. 2008;46: 963–969. doi: 10.1086/529146 18444810
12. Su L-H, Chiu C-H, Chu C, Ou JT. Antimicrobial Resistance in Nontyphoid Salmonella Serotypes: A Global Challenge. Clin Infect Dis. 2004;39: 546–551. doi: 10.1086/422726 15356819
13. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. Global Burden of Invasive Nontyphoidal Salmonella Disease, 20101. Emerg Infect Dis. 2015;21: 941–949. doi: 10.3201/eid2106.140999 25860298
14. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 2009;19: 2279–2287. doi: 10.1101/gr.091017.109 19901036
15. Canals R, Hammarlöf DL, Kröger C, Owen SV, Fong WY, Lacharme-Lora L, et al. Adding function to the genome of African Salmonella Typhimurium ST313 strain D23580. PLOS Biol. 2019;17: e3000059. doi: 10.1371/journal.pbio.3000059 30645593
16. Lokken KL, Walker GT, Tsolis RM. Disseminated infections with antibiotic-resistant non-typhoidal Salmonella strains: contributions of host and pathogen factors. Pathog Dis. 2016;74. doi: 10.1093/femspd/ftw103 27765795
17. Lacharme-Lora L, Owen SV, Blundell R, Canals R, Wenner N, Perez-Sepulveda B, et al. The use of chicken and insect infection models to assess the virulence of African Salmonella Typhimurium ST313. PLoS Negl Trop Dis. 2019;13: e0007540. doi: 10.1371/journal.pntd.0007540 31348776
18. van Opijnen T, Camilli A. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol. 2013;11. doi: 10.1038/nrmicro3033 23712350
19. Chao MC, Abel S, Davis BM, Waldor MK. The design and analysis of transposon insertion sequencing experiments. Nat Rev Microbiol. 2016;14: 119–128. doi: 10.1038/nrmicro.2015.7 26775926
20. Langridge GC, Phan M-D, Turner DJ, Perkins TT, Parts L, Haase J, et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res. 2009;19: 2308–2316. doi: 10.1101/gr.097097.109 19826075
21. Canals R, Xia X-Q, Fronick C, Clifton SW, Ahmer BM, Andrews-Polymenis HL, et al. High-throughput comparison of gene fitness among related bacteria. BMC Genomics. 2012;13: 212. doi: 10.1186/1471-2164-13-212 22646920
22. Khatiwara A, Jiang T, Sung S-S, Dawoud T, Kim JN, Bhattacharya D, et al. Genome Scanning for Conditionally Essential Genes in Salmonella enterica Serotype Typhimurium. Appl Env Microbiol. 2012;78: 3098–3107. doi: 10.1128/AEM.06865-11 22367088
23. Moraes MH de, Desai P, Porwollik S, Canals R, Perez DR, Chu W, et al. Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing. Appl Environ Microbiol. 2017;83: e03028–16. doi: 10.1128/AEM.03028-16 28039131
24. Down TA, Piipari M, Hubbard TJP. Dalliance: interactive genome viewing on the web. Bioinformatics. 2011;27: 889–890. doi: 10.1093/bioinformatics/btr020 21252075
25. Barquist L, Langridge GC, Turner DJ, Phan M-D, Turner AK, Bateman A, et al. A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Res. 2013;41: 4549–4564. doi: 10.1093/nar/gkt148 23470992
26. Knuth K, Niesalla H, Hueck CJ, Fuchs TM. Large-scale identification of essential Salmonella genes by trapping lethal insertions. Mol Microbiol. 2004;51: 1729–1744. doi: 10.1046/j.1365-2958.2003.03944.x 15009898
27. Thiele I, Hyduke DR, Steeb B, Fankam G, Allen DK, Bazzani S, et al. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst Biol. 2011;5: 8. doi: 10.1186/1752-0509-5-8 21244678
28. Owen SV, Wenner N, Canals R, Makumi A, Hammarlöf DL, Gordon MA, et al. Characterization of the Prophage Repertoire of African Salmonella Typhimurium ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1. Front Microbiol. 2017;8. doi: 10.3389/fmicb.2017.00235 28280485
29. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2: 2006.0008. doi: 10.1038/msb4100050 16738554
30. Lodge JK, Weston-Hafer K, Berg DE. Transposon Tn5 Target Specificity: Preference for Insertion at G/C Pairs. Genetics. 1988;120: 645–650. 2852135
31. Goryshin IY, Miller JA, Kil YV, Lanzov VA, Reznikoff WS. Tn5/IS50 target recognition. Proc Natl Acad Sci. 1998;95: 10716–10721. doi: 10.1073/pnas.95.18.10716 9724770
32. Manna D, Porwollik S, McClelland M, Tan R, Higgins NP. Microarray analysis of Mu transposition in Salmonella enterica, serovar Typhimurium: transposon exclusion by high-density DNA binding proteins. Mol Microbiol. 2007;66: 315–328. doi: 10.1111/j.1365-2958.2007.05915.x 17850262
33. Manna D, Breier AM, Higgins NP. Microarray analysis of transposition targets in Escherichia coli: The impact of transcription. Proc Natl Acad Sci. 2004;101: 9780–9785. doi: 10.1073/pnas.0400745101 15210965
34. Casadesus J, Roth JR. Transcriptional occlusion of transposon targets. Mol Gen Genet MGG. 1989;216: 204–209. doi: 10.1007/bf00334357 2546037
35. Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JCD. H-NS Mediates the Silencing of Laterally Acquired Genes in Bacteria. PLOS Pathog. 2006;2: e81. doi: 10.1371/journal.ppat.0020081 16933988
36. Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, et al. Selective Silencing of Foreign DNA with Low GC Content by the H-NS Protein in Salmonella. Science. 2006;313: 236–238. doi: 10.1126/science.1128794 16763111
37. Kimura S, Hubbard TP, Davis BM, Waldor MK. The Nucleoid Binding Protein H-NS Biases Genome-Wide Transposon Insertion Landscapes. mBio. 2016;7: e01351–16. doi: 10.1128/mBio.01351-16 27578758
38. Dillon SC, Cameron ADS, Hokamp K, Lucchini S, Hinton JCD, Dorman CJ. Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid-encoded transcription silencing mechanism. Mol Microbiol. 2010;76: 1250–1265. doi: 10.1111/j.1365-2958.2010.07173.x 20444106
39. Sturm A, Heinemann M, Arnoldini M, Benecke A, Ackermann M, Benz M, et al. The Cost of Virulence: Retarded Growth of Salmonella Typhimurium Cells Expressing Type III Secretion System 1. PLOS Pathog. 2011;7: e1002143. doi: 10.1371/journal.ppat.1002143 21829349
40. Ali SS, Soo J, Rao C, Leung AS, Ngai DH-M, Ensminger AW, et al. Silencing by H-NS Potentiated the Evolution of Salmonella. PLoS Pathog. 2014;10. doi: 10.1371/journal.ppat.1004500 25375226
41. Kong Q, Yang J, Liu Q, Alamuri P, Roland KL, Curtiss R. Effect of Deletion of Genes Involved in Lipopolysaccharide Core and O-Antigen Synthesis on Virulence and Immunogenicity of Salmonella enterica Serovar Typhimurium. Infect Immun. 2011;79: 4227–4239. doi: 10.1128/IAI.05398-11 21768282
42. Azriel S, Goren A, Rahav G, Gal-Mor O. The Stringent Response Regulator DksA Is Required for Salmonella enterica Serovar Typhimurium Growth in Minimal Medium, Motility, Biofilm Formation, and Intestinal Colonization. Infect Immun. 2015;84: 375–384. doi: 10.1128/IAI.01135-15 26553464
43. Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, et al. Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq. PLOS Genet. 2008;4: e1000163. doi: 10.1371/journal.pgen.1000163 18725932
44. Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, et al. Global RNA recognition patterns of post‐transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J. 2016;35: 991–1011. doi: 10.15252/embj.201593360 27044921
45. Fröhlich KS, Papenfort K, Berger AA, Vogel J. A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD. Nucleic Acids Res. 2012;40: 3623–3640. doi: 10.1093/nar/gkr1156 22180532
46. Fröhlich KS, Haneke K, Papenfort K, Vogel J. The target spectrum of SdsR small RNA in Salmonella. Nucleic Acids Res. 2016;44: 10406–10422. doi: 10.1093/nar/gkw632 27407104
47. Lévi-Meyrueis C, Monteil V, Sismeiro O, Dillies M-A, Monot M, Jagla B, et al. Expanding the RpoS/σS-Network by RNA Sequencing and Identification of σS-Controlled Small RNAs in Salmonella. PLOS ONE. 2014;9: e96918. doi: 10.1371/journal.pone.0096918 24810289
48. Hölzer SU, Schlumberger MC, Jäckel D, Hensel M. Effect of the O-Antigen Length of Lipopolysaccharide on the Functions of Type III Secretion Systems in Salmonella enterica. Infect Immun. 2009;77: 5458–5470. doi: 10.1128/IAI.00871-09 19797066
49. Srikumar S, Kröger C, Hébrard M, Colgan A, Owen SV, Sivasankaran SK, et al. RNA-seq Brings New Insights to the Intra-Macrophage Transcriptome of Salmonella Typhimurium. PLOS Pathog. 2015;11: e1005262. doi: 10.1371/journal.ppat.1005262 26561851
50. Hammarlöf DL, Canals R, Hinton JC. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics. Curr Opin Microbiol. 2013;16: 643–651. doi: 10.1016/j.mib.2013.07.009 24021902
51. Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL, Davies HM, et al. Comprehensive Assignment of Roles for Salmonella Typhimurium Genes in Intestinal Colonization of Food-Producing Animals. PLOS Genet. 2013;9: e1003456. doi: 10.1371/journal.pgen.1003456
52. Silva-Valenzuela CA, Molina-Quiroz RC, Desai P, Valenzuela C, Porwollik S, Zhao M, et al. Analysis of Two Complementary Single-Gene Deletion Mutant Libraries of Salmonella Typhimurium in Intraperitoneal Infection of BALB/c Mice. Front Microbiol. 2016;6. doi: 10.3389/fmicb.2015.01455 26779130
53. Charlier D, Glansdorff N. Biosynthesis of Arginine and Polyamines. EcoSal Plus. 2004;1. doi: 10.1128/ecosalplus.3.6.1.10 26443366
54. Köstner M, Schmidt B, Bertram R, Hillen W. Generating Tetracycline-Inducible Auxotrophy in Escherichia coli and Salmonella enterica Serovar Typhimurium by Using an Insertion Element and a Hyperactive Transposase. Appl Env Microbiol. 2006;72: 4717–4725. doi: 10.1128/AEM.00492-06 16820464
55. Guiney DGMD Fierer JMD. The Role of the spv Genes in Salmonella Pathogenesis. Front Microbiol. 2011;2. doi: 10.3389/fmicb.2011.00129 21716657
56. Lesnick ML, Reiner NE, Fierer J, Guiney DG. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol. 2001;39: 1464–1470. doi: 10.1046/j.1365-2958.2001.02360.x 11260464
57. Lee E-J, Groisman EA. An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol Microbiol. 2010;76: 1020–1033. doi: 10.1111/j.1365-2958.2010.07161.x 20398218
58. Alix E, Blanc-Potard A-B. MgtC: a key player in intramacrophage survival. Trends Microbiol. 2007;15: 252–256. doi: 10.1016/j.tim.2007.03.007 17416526
59. Berg DE, Weiss A, Crossland L. Polarity of Tn5 insertion mutations in Escherichia coli. J Bacteriol. 1980;142: 439–446. 6247321
60. Wang A, Roth JR. Activation of Silent Genes by Transposons Tn5 and Tn10. Genetics. 1988;120: 875–885. 2852142
61. Pati NB, Vishwakarma V, Jaiswal S, Periaswamy B, Hardt W-D, Suar M. Deletion of invH gene in Salmonella enterica serovar Typhimurium limits the secretion of Sip effector proteins. Microbes Infect. 2013;15: 66–73. doi: 10.1016/j.micinf.2012.10.014 23159244
62. Goodall ECA, Robinson A, Johnston IG, Jabbari S, Turner KA, Cunningham AF, et al. The Essential Genome of Escherichia coli K-12. mBio. 2018;9. doi: 10.1128/mBio.02096-17 29463657
63. Hutchison CA, Merryman C, Sun L, Assad-Garcia N, Richter RA, Smith HO, et al. Polar effects of transposon insertion into a minimal bacterial genome. J Bacteriol. 2019; JB.00185-19. doi: 10.1128/JB.00185-19 31262838
64. Hancock SJ, Phan M-D, Peters KM, Forde BM, Chong TM, Yin W-F, et al. Identification of IncA/C Plasmid Replication and Maintenance Genes and Development of a Plasmid Multilocus Sequence Typing Scheme. Antimicrob Agents Chemother. 2017;61: e01740–16. doi: 10.1128/AAC.01740-16 27872077
65. Phan MD, Forde BM, Peters KM, Sarkar S, Hancock S, Stanton-Cook M, et al. Molecular Characterization of a Multidrug Resistance IncF Plasmid from the Globally Disseminated Escherichia coli ST131 Clone. PLOS ONE. 2015;10: e0122369. doi: 10.1371/journal.pone.0122369 25875675
66. Llanes C, Gabant P, Couturier M, Bayer L, Plesiat P. Molecular Analysis of the Replication Elements of the Broad-Host-Range RepA/C Replicon. Plasmid. 1996;36: 26–35. doi: 10.1006/plas.1996.0028 8938049
67. Deighan P, Beloin C, Dorman CJ. Three-way interactions among the Sfh, StpA and H-NS nucleoid-structuring proteins of Shigella flexneri 2a strain 2457T. Mol Microbiol. 2003;48: 1401–1416. doi: 10.1046/j.1365-2958.2003.03515.x 12787365
68. Beloin C, Deighan P, Doyle M, Dorman CJ. Shigella flexneri 2a strain 2457T expresses three members of the H-NS-like protein family: characterization of the Sfh protein. Mol Genet Genomics. 2003;270: 66–77. doi: 10.1007/s00438-003-0897-0 12898223
69. Doyle M, Fookes M, Ivens A, Mangan MW, Wain J, Dorman CJ. An H-NS-like Stealth Protein Aids Horizontal DNA Transmission in Bacteria. Science. 2007;315: 251–252. doi: 10.1126/science.1137550 17218529
70. Yamaichi Y, Chao MC, Sasabe J, Clark L, Davis BM, Yamamoto N, et al. High-resolution genetic analysis of the requirements for horizontal transmission of the ESBL plasmid from Escherichia coli O104:H4. Nucleic Acids Res. 2015;43: 348–360. doi: 10.1093/nar/gku1262 25477379
71. Poidevin M, Sato M, Altinoglu I, Delaplace M, Sato C, Yamaichi Y. Mutation in ESBL Plasmid from Escherichia coli O104:H4 Leads Autoagglutination and Enhanced Plasmid Dissemination. Front Microbiol. 2018;9. doi: 10.3389/fmicb.2018.00130 29456528
72. Dziewit L, Czarnecki J, Wibberg D, Radlinska M, Mrozek P, Szymczak M, et al. Architecture and functions of a multipartite genome of the methylotrophic bacterium Paracoccus aminophilus JCM 7686, containing primary and secondary chromids. BMC Genomics. 2014;15: 124. doi: 10.1186/1471-2164-15-124 24517536
73. Ebert M, Laaß S, Burghartz M, Petersen J, Koßmehl S, Wöhlbrand L, et al. Transposon Mutagenesis Identified Chromosomal and Plasmid Genes Essential for Adaptation of the Marine Bacterium Dinoroseobacter shibae to Anaerobic Conditions. J Bacteriol. 2013;195: 4769–4777. doi: 10.1128/JB.00860-13 23974024
74. Tazzyman SJ, Bonhoeffer S. Why There Are No Essential Genes on Plasmids. Mol Biol Evol. 2015;32: 3079–3088. doi: 10.1093/molbev/msu293 25540453
75. Haseltine WA, Block R. Synthesis of Guanosine Tetra- and Pentaphosphate Requires the Presence of a Codon-Specific, Uncharged Transfer Ribonucleic Acid in the Acceptor Site of Ribosomes. Proc Natl Acad Sci U S A. 1973;70: 1564–1568. doi: 10.1073/pnas.70.5.1564 4576025
76. Agirrezabala X, Fernández IS, Kelley AC, Cartón DG, Ramakrishnan V, Valle M. The ribosome triggers the stringent response by RelA via a highly distorted tRNA. EMBO Rep. 2013;14: 811–816. doi: 10.1038/embor.2013.106 23877429
77. Chaliotis A, Vlastaridis P, Mossialos D, Ibba M, Becker HD, Stathopoulos C, et al. The complex evolutionary history of aminoacyl-tRNA synthetases. Nucleic Acids Res. 2017;45: 1059–1068. doi: 10.1093/nar/gkw1182 28180287
78. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1: 16048. doi: 10.1038/nmicrobiol.2016.48 27572647
79. Kröger C, Colgan A, Srikumar S, Händler K, Sivasankaran SK, Hammarlöf DL, et al. An Infection-Relevant Transcriptomic Compendium for Salmonella enterica Serovar Typhimurium. Cell Host Microbe. 2013;14: 683–695. doi: 10.1016/j.chom.2013.11.010 24331466
80. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17: 10–12. doi: 10.14806/ej.17.1.200
81. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio. 2013; Available: http://arxiv.org/abs/1303.3997
82. Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ, Page AJ, et al. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics. 2016;32: 1109–1111. doi: 10.1093/bioinformatics/btw022 26794317
83. Vohra P, Chaudhuri RR, Mayho M, Vrettou C, Chintoan-Uta C, Thomson NR, et al. Retrospective application of transposon-directed insertion-site sequencing to investigate niche-specific virulence of Salmonella Typhimurium in cattle. BMC Genomics. 2019;20: 20. doi: 10.1186/s12864-018-5319-0 30621582
84. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97: 6640–6645. doi: 10.1073/pnas.120163297 10829079
85. Kintz E, Davies MR, Hammarlöf DL, Canals R, Hinton JCD, van der Woude MW. A BTP1 prophage gene present in invasive non-typhoidal Salmonella determines composition and length of the O-antigen of the lipopolysaccharide. Mol Microbiol. 2015;96: 263–275. doi: 10.1111/mmi.12933 25586744
86. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44: D733–D745. doi: 10.1093/nar/gkv1189 26553804
87. Ashton PM, Owen SV, Kaindama L, Rowe WPM, Lane CR, Larkin L, et al. Public health surveillance in the UK revolutionises our understanding of the invasive Salmonella Typhimurium epidemic in Africa. Genome Med. 2017;9. doi: 10.1186/s13073-017-0399-z
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 9
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Stillova choroba: vzácné a závažné systémové onemocnění
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge
- Anti-HIV potency of T-cell responses elicited by dendritic cell therapeutic vaccination
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize